MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3 Structured version   Visualization version   GIF version

Theorem wfr3 8258
Description: The principle of Well-Ordered Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 8256 and wfr2 8257 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
wfr3.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝐺   𝑧,𝐻   𝑧,𝑅

Proof of Theorem wfr3
StepHypRef Expression
1 simpl 482 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝑅 We 𝐴𝑅 Se 𝐴))
2 wfr3.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
32wfr1 8256 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
42wfr2 8257 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
54ralrimiva 3124 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
63, 5jca 511 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
76adantr 480 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
8 simpr 484 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))))
9 wfr3g 8249 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
101, 7, 8, 9syl3anc 1373 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wral 3047   Se wse 5565   We wwe 5566  cres 5616  Predcpred 6247   Fn wfn 6476  cfv 6481  wrecscwrecs 8241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242
This theorem is referenced by:  tfr3ALT  8321
  Copyright terms: Public domain W3C validator