Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfr3 | Structured version Visualization version GIF version |
Description: The principle of Well-Founded Recursion, part 3 of 3. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in wfr1 8002 and wfr2 8003 is identical to 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfr3.1 | ⊢ 𝑅 We 𝐴 |
wfr3.2 | ⊢ 𝑅 Se 𝐴 |
wfr3.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
wfr3 | ⊢ ((𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr3.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
2 | wfr3.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
3 | 1, 2 | pm3.2i 474 | . 2 ⊢ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) |
4 | wfr3.3 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
5 | 1, 2, 4 | wfr1 8002 | . . 3 ⊢ 𝐹 Fn 𝐴 |
6 | 1, 2, 4 | wfr2 8003 | . . . 4 ⊢ (𝑧 ∈ 𝐴 → (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
7 | 6 | rgen 3063 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) |
8 | 5, 7 | pm3.2i 474 | . 2 ⊢ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
9 | wfr3g 7982 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | |
10 | 3, 8, 9 | mp3an12 1452 | 1 ⊢ ((𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∀wral 3053 Se wse 5481 We wwe 5482 ↾ cres 5527 Predcpred 6128 Fn wfn 6334 ‘cfv 6339 wrecscwrecs 7975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-wrecs 7976 |
This theorem is referenced by: tfr3ALT 8067 |
Copyright terms: Public domain | W3C validator |