MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2 Structured version   Visualization version   GIF version

Theorem wfr2 8242
Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋𝐴 is 𝐺 applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
wfr2.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2
StepHypRef Expression
1 wfr2.1 . . . . . 6 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfr1 8241 . . . . 5 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
32fndmd 6595 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
43eleq2d 2823 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝑋 ∈ dom 𝐹𝑋𝐴))
54biimpar 479 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐹)
61wfr2a 8240 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
75, 6syldan 592 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106   Se wse 5578   We wwe 5579  dom cdm 5625  cres 5627  Predcpred 6242  cfv 6484  wrecscwrecs 8202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ov 7345  df-2nd 7905  df-frecs 8172  df-wrecs 8203
This theorem is referenced by:  wfr3  8243  wfr3OLD  8244  tfr2ALT  8307  bpolylem  15858
  Copyright terms: Public domain W3C validator