| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfr2 | Structured version Visualization version GIF version | ||
| Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋 ∈ 𝐴 is 𝐺 applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| wfr2.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfr2 | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfr2.1 | . . . . . 6 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 2 | 1 | wfr1 8354 | . . . . 5 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
| 3 | 2 | fndmd 6648 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) |
| 4 | 3 | eleq2d 2821 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴)) |
| 5 | 4 | biimpar 477 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ dom 𝐹) |
| 6 | 1 | wfr2a 8353 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| 7 | 5, 6 | syldan 591 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Se wse 5609 We wwe 5610 dom cdm 5659 ↾ cres 5661 Predcpred 6294 ‘cfv 6536 wrecscwrecs 8315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 |
| This theorem is referenced by: wfr3 8356 wfr3OLD 8357 tfr2ALT 8420 bpolylem 16069 |
| Copyright terms: Public domain | W3C validator |