MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr2 Structured version   Visualization version   GIF version

Theorem wfr2 8267
Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of 𝐹 at any 𝑋𝐴 is 𝐺 applied to all "previous" values of 𝐹. (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
wfr2.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem wfr2
StepHypRef Expression
1 wfr2.1 . . . . . 6 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
21wfr1 8266 . . . . 5 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
32fndmd 6591 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
43eleq2d 2814 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝑋 ∈ dom 𝐹𝑋𝐴))
54biimpar 477 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐹)
61wfr2a 8265 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
75, 6syldan 591 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   Se wse 5574   We wwe 5575  dom cdm 5623  cres 5625  Predcpred 6252  cfv 6486  wrecscwrecs 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252
This theorem is referenced by:  wfr3  8268  tfr2ALT  8330  bpolylem  15973
  Copyright terms: Public domain W3C validator