MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3OLD Structured version   Visualization version   GIF version

Theorem wfr3OLD 8379
Description: Obsolete form of wfr3 8378 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfr3OLD.1 𝑅 We 𝐴
wfr3OLD.2 𝑅 Se 𝐴
wfr3OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr3OLD ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝐺   𝑧,𝐻   𝑧,𝑅

Proof of Theorem wfr3OLD
StepHypRef Expression
1 wfr3OLD.1 . . 3 𝑅 We 𝐴
2 wfr3OLD.2 . . 3 𝑅 Se 𝐴
31, 2pm3.2i 470 . 2 (𝑅 We 𝐴𝑅 Se 𝐴)
4 wfr3OLD.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
54wfr1 8376 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
61, 2, 5mp2an 692 . . 3 𝐹 Fn 𝐴
74wfr2 8377 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
81, 2, 7mpanl12 702 . . . 4 (𝑧𝐴 → (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
98rgen 3062 . . 3 𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
106, 9pm3.2i 470 . 2 (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
11 wfr3g 8348 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
123, 10, 11mp3an12 1452 1 ((𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060   Se wse 5634   We wwe 5635  cres 5686  Predcpred 6319   Fn wfn 6555  cfv 6560  wrecscwrecs 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator