| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfr3OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete form of wfr3 8356 as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 18-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| wfr3OLD.1 | ⊢ 𝑅 We 𝐴 |
| wfr3OLD.2 | ⊢ 𝑅 Se 𝐴 |
| wfr3OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfr3OLD | ⊢ ((𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfr3OLD.1 | . . 3 ⊢ 𝑅 We 𝐴 | |
| 2 | wfr3OLD.2 | . . 3 ⊢ 𝑅 Se 𝐴 | |
| 3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) |
| 4 | wfr3OLD.3 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 5 | 4 | wfr1 8354 | . . . 4 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
| 6 | 1, 2, 5 | mp2an 692 | . . 3 ⊢ 𝐹 Fn 𝐴 |
| 7 | 4 | wfr2 8355 | . . . . 5 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 8 | 1, 2, 7 | mpanl12 702 | . . . 4 ⊢ (𝑧 ∈ 𝐴 → (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 9 | 8 | rgen 3054 | . . 3 ⊢ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 10 | 6, 9 | pm3.2i 470 | . 2 ⊢ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 11 | wfr3g 8326 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) = (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻) | |
| 12 | 3, 10, 11 | mp3an12 1453 | 1 ⊢ ((𝐻 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐻‘𝑧) = (𝐺‘(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))) → 𝐹 = 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Se wse 5609 We wwe 5610 ↾ cres 5661 Predcpred 6294 Fn wfn 6531 ‘cfv 6536 wrecscwrecs 8315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |