MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkouni Structured version   Visualization version   GIF version

Theorem xkouni 23484
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
xkouni.1 𝐽 = (𝑆ko 𝑅)
Assertion
Ref Expression
xkouni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)

Proof of Theorem xkouni
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 6028 . . . . . . . . 9 (𝑓 “ ∅) = ∅
2 0ss 4351 . . . . . . . . 9 ∅ ⊆ 𝑆
31, 2eqsstri 3982 . . . . . . . 8 (𝑓 “ ∅) ⊆ 𝑆
43a1i 11 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (𝑓 “ ∅) ⊆ 𝑆)
54ralrimiva 3121 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
6 rabid2 3428 . . . . . 6 ((𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ↔ ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
75, 6sylibr 234 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆})
8 eqid 2729 . . . . . 6 𝑅 = 𝑅
9 simpl 482 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
10 simpr 484 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
11 0ss 4351 . . . . . . 7 ∅ ⊆ 𝑅
1211a1i 11 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∅ ⊆ 𝑅)
13 rest0 23054 . . . . . . . 8 (𝑅 ∈ Top → (𝑅t ∅) = {∅})
1413adantr 480 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) = {∅})
15 0cmp 23279 . . . . . . 7 {∅} ∈ Comp
1614, 15eqeltrdi 2836 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) ∈ Comp)
17 eqid 2729 . . . . . . . 8 𝑆 = 𝑆
1817topopn 22791 . . . . . . 7 (𝑆 ∈ Top → 𝑆𝑆)
1918adantl 481 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆𝑆)
208, 9, 10, 12, 16, 19xkoopn 23474 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ∈ (𝑆ko 𝑅))
217, 20eqeltrd 2828 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆ko 𝑅))
22 xkouni.1 . . . 4 𝐽 = (𝑆ko 𝑅)
2321, 22eleqtrrdi 2839 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ 𝐽)
24 elssuni 4888 . . 3 ((𝑅 Cn 𝑆) ∈ 𝐽 → (𝑅 Cn 𝑆) ⊆ 𝐽)
2523, 24syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ 𝐽)
26 eqid 2729 . . . . . 6 {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}
27 eqid 2729 . . . . . 6 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
288, 26, 27xkoval 23472 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
2928unieqd 4871 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
3022unieqi 4870 . . . 4 𝐽 = (𝑆ko 𝑅)
31 ovex 7382 . . . . . . . 8 (𝑅 Cn 𝑆) ∈ V
3231pwex 5319 . . . . . . 7 𝒫 (𝑅 Cn 𝑆) ∈ V
338, 26, 27xkotf 23470 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
34 frn 6659 . . . . . . . 8 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
3533, 34ax-mp 5 . . . . . . 7 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
3632, 35ssexi 5261 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
37 fiuni 9318 . . . . . 6 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
3836, 37ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
39 fvex 6835 . . . . . 6 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
40 unitg 22852 . . . . . 6 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4139, 40ax-mp 5 . . . . 5 (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4238, 41eqtr4i 2755 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4329, 30, 423eqtr4g 2789 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4435a1i 11 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
45 sspwuni 5049 . . . 4 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) ↔ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4644, 45sylib 218 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4743, 46eqsstrd 3970 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ⊆ (𝑅 Cn 𝑆))
4825, 47eqssd 3953 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  wss 3903  c0 4284  𝒫 cpw 4551  {csn 4577   cuni 4858   × cxp 5617  ran crn 5620  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  ficfi 9300  t crest 17324  topGenctg 17341  Topctop 22778   Cn ccn 23109  Compccmp 23271  ko cxko 23446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-en 8873  df-fin 8876  df-fi 9301  df-rest 17326  df-topgen 17347  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-xko 23448
This theorem is referenced by:  xkotopon  23485  xkohaus  23538  xkoptsub  23539
  Copyright terms: Public domain W3C validator