MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkouni Structured version   Visualization version   GIF version

Theorem xkouni 23095
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
xkouni.1 𝐽 = (𝑆ko 𝑅)
Assertion
Ref Expression
xkouni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)

Proof of Theorem xkouni
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 6074 . . . . . . . . 9 (𝑓 “ ∅) = ∅
2 0ss 4396 . . . . . . . . 9 ∅ ⊆ 𝑆
31, 2eqsstri 4016 . . . . . . . 8 (𝑓 “ ∅) ⊆ 𝑆
43a1i 11 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (𝑓 “ ∅) ⊆ 𝑆)
54ralrimiva 3147 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
6 rabid2 3465 . . . . . 6 ((𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ↔ ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
75, 6sylibr 233 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆})
8 eqid 2733 . . . . . 6 𝑅 = 𝑅
9 simpl 484 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
10 simpr 486 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
11 0ss 4396 . . . . . . 7 ∅ ⊆ 𝑅
1211a1i 11 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∅ ⊆ 𝑅)
13 rest0 22665 . . . . . . . 8 (𝑅 ∈ Top → (𝑅t ∅) = {∅})
1413adantr 482 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) = {∅})
15 0cmp 22890 . . . . . . 7 {∅} ∈ Comp
1614, 15eqeltrdi 2842 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) ∈ Comp)
17 eqid 2733 . . . . . . . 8 𝑆 = 𝑆
1817topopn 22400 . . . . . . 7 (𝑆 ∈ Top → 𝑆𝑆)
1918adantl 483 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆𝑆)
208, 9, 10, 12, 16, 19xkoopn 23085 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ∈ (𝑆ko 𝑅))
217, 20eqeltrd 2834 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆ko 𝑅))
22 xkouni.1 . . . 4 𝐽 = (𝑆ko 𝑅)
2321, 22eleqtrrdi 2845 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ 𝐽)
24 elssuni 4941 . . 3 ((𝑅 Cn 𝑆) ∈ 𝐽 → (𝑅 Cn 𝑆) ⊆ 𝐽)
2523, 24syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ 𝐽)
26 eqid 2733 . . . . . 6 {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}
27 eqid 2733 . . . . . 6 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
288, 26, 27xkoval 23083 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
2928unieqd 4922 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
3022unieqi 4921 . . . 4 𝐽 = (𝑆ko 𝑅)
31 ovex 7439 . . . . . . . 8 (𝑅 Cn 𝑆) ∈ V
3231pwex 5378 . . . . . . 7 𝒫 (𝑅 Cn 𝑆) ∈ V
338, 26, 27xkotf 23081 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
34 frn 6722 . . . . . . . 8 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
3533, 34ax-mp 5 . . . . . . 7 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
3632, 35ssexi 5322 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
37 fiuni 9420 . . . . . 6 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
3836, 37ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
39 fvex 6902 . . . . . 6 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
40 unitg 22462 . . . . . 6 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4139, 40ax-mp 5 . . . . 5 (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4238, 41eqtr4i 2764 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4329, 30, 423eqtr4g 2798 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4435a1i 11 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
45 sspwuni 5103 . . . 4 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) ↔ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4644, 45sylib 217 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4743, 46eqsstrd 4020 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ⊆ (𝑅 Cn 𝑆))
4825, 47eqssd 3999 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  {crab 3433  Vcvv 3475  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908   × cxp 5674  ran crn 5677  cima 5679  wf 6537  cfv 6541  (class class class)co 7406  cmpo 7408  ficfi 9402  t crest 17363  topGenctg 17380  Topctop 22387   Cn ccn 22720  Compccmp 22882  ko cxko 23057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-1o 8463  df-er 8700  df-en 8937  df-fin 8940  df-fi 9403  df-rest 17365  df-topgen 17386  df-top 22388  df-topon 22405  df-bases 22441  df-cmp 22883  df-xko 23059
This theorem is referenced by:  xkotopon  23096  xkohaus  23149  xkoptsub  23150
  Copyright terms: Public domain W3C validator