Step | Hyp | Ref
| Expression |
1 | | ima0 5945 |
. . . . . . . . 9
⊢ (𝑓 “ ∅) =
∅ |
2 | | 0ss 4311 |
. . . . . . . . 9
⊢ ∅
⊆ ∪ 𝑆 |
3 | 1, 2 | eqsstri 3935 |
. . . . . . . 8
⊢ (𝑓 “ ∅) ⊆ ∪ 𝑆 |
4 | 3 | a1i 11 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (𝑓 “ ∅) ⊆ ∪ 𝑆) |
5 | 4 | ralrimiva 3105 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) →
∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ ∪ 𝑆) |
6 | | rabid2 3293 |
. . . . . 6
⊢ ((𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ ∪ 𝑆}
↔ ∀𝑓 ∈
(𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ ∪ 𝑆) |
7 | 5, 6 | sylibr 237 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ ∪ 𝑆}) |
8 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝑅 =
∪ 𝑅 |
9 | | simpl 486 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top) |
10 | | simpr 488 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top) |
11 | | 0ss 4311 |
. . . . . . 7
⊢ ∅
⊆ ∪ 𝑅 |
12 | 11 | a1i 11 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∅
⊆ ∪ 𝑅) |
13 | | rest0 22066 |
. . . . . . . 8
⊢ (𝑅 ∈ Top → (𝑅 ↾t ∅) =
{∅}) |
14 | 13 | adantr 484 |
. . . . . . 7
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ↾t ∅) =
{∅}) |
15 | | 0cmp 22291 |
. . . . . . 7
⊢ {∅}
∈ Comp |
16 | 14, 15 | eqeltrdi 2846 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ↾t ∅)
∈ Comp) |
17 | | eqid 2737 |
. . . . . . . 8
⊢ ∪ 𝑆 =
∪ 𝑆 |
18 | 17 | topopn 21803 |
. . . . . . 7
⊢ (𝑆 ∈ Top → ∪ 𝑆
∈ 𝑆) |
19 | 18 | adantl 485 |
. . . . . 6
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ 𝑆
∈ 𝑆) |
20 | 8, 9, 10, 12, 16, 19 | xkoopn 22486 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ ∪ 𝑆}
∈ (𝑆
↑ko 𝑅)) |
21 | 7, 20 | eqeltrd 2838 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ↑ko 𝑅)) |
22 | | xkouni.1 |
. . . 4
⊢ 𝐽 = (𝑆 ↑ko 𝑅) |
23 | 21, 22 | eleqtrrdi 2849 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ 𝐽) |
24 | | elssuni 4851 |
. . 3
⊢ ((𝑅 Cn 𝑆) ∈ 𝐽 → (𝑅 Cn 𝑆) ⊆ ∪ 𝐽) |
25 | 23, 24 | syl 17 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ ∪ 𝐽) |
26 | | eqid 2737 |
. . . . . 6
⊢ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp} = {𝑥 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
27 | | eqid 2737 |
. . . . . 6
⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
28 | 8, 26, 27 | xkoval 22484 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
29 | 28 | unieqd 4833 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ (𝑆
↑ko 𝑅) =
∪ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
30 | 22 | unieqi 4832 |
. . . 4
⊢ ∪ 𝐽 =
∪ (𝑆 ↑ko 𝑅) |
31 | | ovex 7246 |
. . . . . . . 8
⊢ (𝑅 Cn 𝑆) ∈ V |
32 | 31 | pwex 5273 |
. . . . . . 7
⊢ 𝒫
(𝑅 Cn 𝑆) ∈ V |
33 | 8, 26, 27 | xkotf 22482 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
34 | | frn 6552 |
. . . . . . . 8
⊢ ((𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)) |
35 | 33, 34 | ax-mp 5 |
. . . . . . 7
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) |
36 | 32, 35 | ssexi 5215 |
. . . . . 6
⊢ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V |
37 | | fiuni 9044 |
. . . . . 6
⊢ (ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ∈ V → ∪ ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = ∪
(fi‘ran (𝑘 ∈
{𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) |
38 | 36, 37 | ax-mp 5 |
. . . . 5
⊢ ∪ ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = ∪
(fi‘ran (𝑘 ∈
{𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
39 | | fvex 6730 |
. . . . . 6
⊢
(fi‘ran (𝑘
∈ {𝑥 ∈ 𝒫
∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ V |
40 | | unitg 21864 |
. . . . . 6
⊢
((fi‘ran (𝑘
∈ {𝑥 ∈ 𝒫
∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ V → ∪ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) = ∪
(fi‘ran (𝑘 ∈
{𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) |
41 | 39, 40 | ax-mp 5 |
. . . . 5
⊢ ∪ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) = ∪
(fi‘ran (𝑘 ∈
{𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
42 | 38, 41 | eqtr4i 2768 |
. . . 4
⊢ ∪ ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = ∪
(topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) |
43 | 29, 30, 42 | 3eqtr4g 2803 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ 𝐽 =
∪ ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
44 | 35 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)) |
45 | | sspwuni 5008 |
. . . 4
⊢ (ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) ↔ ∪ ran
(𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆)) |
46 | 44, 45 | sylib 221 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆)) |
47 | 43, 46 | eqsstrd 3939 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∪ 𝐽
⊆ (𝑅 Cn 𝑆)) |
48 | 25, 47 | eqssd 3918 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = ∪ 𝐽) |