MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptopn2 Structured version   Visualization version   GIF version

Theorem ptopn2 22643
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptopn2.a (𝜑𝐴𝑉)
ptopn2.f (𝜑𝐹:𝐴⟶Top)
ptopn2.o (𝜑𝑂 ∈ (𝐹𝑌))
Assertion
Ref Expression
ptopn2 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉   𝑘,𝑌
Allowed substitution hint:   𝑂(𝑘)

Proof of Theorem ptopn2
StepHypRef Expression
1 ptopn2.a . 2 (𝜑𝐴𝑉)
2 ptopn2.f . 2 (𝜑𝐹:𝐴⟶Top)
3 snfi 8788 . . 3 {𝑌} ∈ Fin
43a1i 11 . 2 (𝜑 → {𝑌} ∈ Fin)
5 ptopn2.o . . . . . 6 (𝜑𝑂 ∈ (𝐹𝑌))
65adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 𝑂 ∈ (𝐹𝑌))
7 fveq2 6756 . . . . . 6 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
87eleq2d 2824 . . . . 5 (𝑘 = 𝑌 → (𝑂 ∈ (𝐹𝑘) ↔ 𝑂 ∈ (𝐹𝑌)))
96, 8syl5ibrcom 246 . . . 4 ((𝜑𝑘𝐴) → (𝑘 = 𝑌𝑂 ∈ (𝐹𝑘)))
109imp 406 . . 3 (((𝜑𝑘𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹𝑘))
112ffvelrnda 6943 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
12 eqid 2738 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
1312topopn 21963 . . . . 5 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
1411, 13syl 17 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
1514adantr 480 . . 3 (((𝜑𝑘𝐴) ∧ ¬ 𝑘 = 𝑌) → (𝐹𝑘) ∈ (𝐹𝑘))
1610, 15ifclda 4491 . 2 ((𝜑𝑘𝐴) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (𝐹𝑘))
17 eldifn 4058 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌})
18 velsn 4574 . . . . 5 (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌)
1917, 18sylnib 327 . . . 4 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌)
2019iffalsed 4467 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
2120adantl 481 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
221, 2, 4, 16, 21ptopn 22642 1 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  ifcif 4456  {csn 4558   cuni 4836  wf 6414  cfv 6418  Xcixp 8643  Fincfn 8691  tcpt 17066  Topctop 21950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-ixp 8644  df-en 8692  df-fin 8695  df-fi 9100  df-topgen 17071  df-pt 17072  df-top 21951  df-bases 22004
This theorem is referenced by:  ptcld  22672
  Copyright terms: Public domain W3C validator