| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptopn2 | Structured version Visualization version GIF version | ||
| Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptopn2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ptopn2.f | ⊢ (𝜑 → 𝐹:𝐴⟶Top) |
| ptopn2.o | ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) |
| Ref | Expression |
|---|---|
| ptopn2 | ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptopn2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ptopn2.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶Top) | |
| 3 | snfi 9017 | . . 3 ⊢ {𝑌} ∈ Fin | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → {𝑌} ∈ Fin) |
| 5 | ptopn2.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑂 ∈ (𝐹‘𝑌)) |
| 7 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = 𝑌 → (𝐹‘𝑘) = (𝐹‘𝑌)) | |
| 8 | 7 | eleq2d 2815 | . . . . 5 ⊢ (𝑘 = 𝑌 → (𝑂 ∈ (𝐹‘𝑘) ↔ 𝑂 ∈ (𝐹‘𝑌))) |
| 9 | 6, 8 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 = 𝑌 → 𝑂 ∈ (𝐹‘𝑘))) |
| 10 | 9 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹‘𝑘)) |
| 11 | 2 | ffvelcdmda 7059 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
| 12 | eqid 2730 | . . . . . 6 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
| 13 | 12 | topopn 22800 | . . . . 5 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 = 𝑌) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 16 | 10, 15 | ifclda 4527 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (𝐹‘𝑘)) |
| 17 | eldifn 4098 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌}) | |
| 18 | velsn 4608 | . . . . 5 ⊢ (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌) | |
| 19 | 17, 18 | sylnib 328 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌) |
| 20 | 19 | iffalsed 4502 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
| 21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
| 22 | 1, 2, 4, 16, 21 | ptopn 23477 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ifcif 4491 {csn 4592 ∪ cuni 4874 ⟶wf 6510 ‘cfv 6514 Xcixp 8873 Fincfn 8921 ∏tcpt 17408 Topctop 22787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 df-ixp 8874 df-en 8922 df-fin 8925 df-fi 9369 df-topgen 17413 df-pt 17414 df-top 22788 df-bases 22840 |
| This theorem is referenced by: ptcld 23507 |
| Copyright terms: Public domain | W3C validator |