| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptopn2 | Structured version Visualization version GIF version | ||
| Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ptopn2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ptopn2.f | ⊢ (𝜑 → 𝐹:𝐴⟶Top) |
| ptopn2.o | ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) |
| Ref | Expression |
|---|---|
| ptopn2 | ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptopn2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | ptopn2.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶Top) | |
| 3 | snfi 8965 | . . 3 ⊢ {𝑌} ∈ Fin | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → {𝑌} ∈ Fin) |
| 5 | ptopn2.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑂 ∈ (𝐹‘𝑌)) |
| 7 | fveq2 6822 | . . . . . 6 ⊢ (𝑘 = 𝑌 → (𝐹‘𝑘) = (𝐹‘𝑌)) | |
| 8 | 7 | eleq2d 2817 | . . . . 5 ⊢ (𝑘 = 𝑌 → (𝑂 ∈ (𝐹‘𝑘) ↔ 𝑂 ∈ (𝐹‘𝑌))) |
| 9 | 6, 8 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 = 𝑌 → 𝑂 ∈ (𝐹‘𝑘))) |
| 10 | 9 | imp 406 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹‘𝑘)) |
| 11 | 2 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
| 12 | eqid 2731 | . . . . . 6 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
| 13 | 12 | topopn 22821 | . . . . 5 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 15 | 14 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 = 𝑌) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
| 16 | 10, 15 | ifclda 4508 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (𝐹‘𝑘)) |
| 17 | eldifn 4079 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌}) | |
| 18 | velsn 4589 | . . . . 5 ⊢ (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌) | |
| 19 | 17, 18 | sylnib 328 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌) |
| 20 | 19 | iffalsed 4483 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
| 21 | 20 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
| 22 | 1, 2, 4, 16, 21 | ptopn 23498 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ifcif 4472 {csn 4573 ∪ cuni 4856 ⟶wf 6477 ‘cfv 6481 Xcixp 8821 Fincfn 8869 ∏tcpt 17342 Topctop 22808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-ixp 8822 df-en 8870 df-fin 8873 df-fi 9295 df-topgen 17347 df-pt 17348 df-top 22809 df-bases 22861 |
| This theorem is referenced by: ptcld 23528 |
| Copyright terms: Public domain | W3C validator |