MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptopn2 Structured version   Visualization version   GIF version

Theorem ptopn2 23478
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptopn2.a (𝜑𝐴𝑉)
ptopn2.f (𝜑𝐹:𝐴⟶Top)
ptopn2.o (𝜑𝑂 ∈ (𝐹𝑌))
Assertion
Ref Expression
ptopn2 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉   𝑘,𝑌
Allowed substitution hint:   𝑂(𝑘)

Proof of Theorem ptopn2
StepHypRef Expression
1 ptopn2.a . 2 (𝜑𝐴𝑉)
2 ptopn2.f . 2 (𝜑𝐹:𝐴⟶Top)
3 snfi 9017 . . 3 {𝑌} ∈ Fin
43a1i 11 . 2 (𝜑 → {𝑌} ∈ Fin)
5 ptopn2.o . . . . . 6 (𝜑𝑂 ∈ (𝐹𝑌))
65adantr 480 . . . . 5 ((𝜑𝑘𝐴) → 𝑂 ∈ (𝐹𝑌))
7 fveq2 6861 . . . . . 6 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
87eleq2d 2815 . . . . 5 (𝑘 = 𝑌 → (𝑂 ∈ (𝐹𝑘) ↔ 𝑂 ∈ (𝐹𝑌)))
96, 8syl5ibrcom 247 . . . 4 ((𝜑𝑘𝐴) → (𝑘 = 𝑌𝑂 ∈ (𝐹𝑘)))
109imp 406 . . 3 (((𝜑𝑘𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹𝑘))
112ffvelcdmda 7059 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
12 eqid 2730 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
1312topopn 22800 . . . . 5 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
1411, 13syl 17 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
1514adantr 480 . . 3 (((𝜑𝑘𝐴) ∧ ¬ 𝑘 = 𝑌) → (𝐹𝑘) ∈ (𝐹𝑘))
1610, 15ifclda 4527 . 2 ((𝜑𝑘𝐴) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (𝐹𝑘))
17 eldifn 4098 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌})
18 velsn 4608 . . . . 5 (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌)
1917, 18sylnib 328 . . . 4 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌)
2019iffalsed 4502 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
2120adantl 481 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
221, 2, 4, 16, 21ptopn 23477 1 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  ifcif 4491  {csn 4592   cuni 4874  wf 6510  cfv 6514  Xcixp 8873  Fincfn 8921  tcpt 17408  Topctop 22787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-bases 22840
This theorem is referenced by:  ptcld  23507
  Copyright terms: Public domain W3C validator