MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptopn2 Structured version   Visualization version   GIF version

Theorem ptopn2 22193
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptopn2.a (𝜑𝐴𝑉)
ptopn2.f (𝜑𝐹:𝐴⟶Top)
ptopn2.o (𝜑𝑂 ∈ (𝐹𝑌))
Assertion
Ref Expression
ptopn2 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉   𝑘,𝑌
Allowed substitution hint:   𝑂(𝑘)

Proof of Theorem ptopn2
StepHypRef Expression
1 ptopn2.a . 2 (𝜑𝐴𝑉)
2 ptopn2.f . 2 (𝜑𝐹:𝐴⟶Top)
3 snfi 8581 . . 3 {𝑌} ∈ Fin
43a1i 11 . 2 (𝜑 → {𝑌} ∈ Fin)
5 ptopn2.o . . . . . 6 (𝜑𝑂 ∈ (𝐹𝑌))
65adantr 484 . . . . 5 ((𝜑𝑘𝐴) → 𝑂 ∈ (𝐹𝑌))
7 fveq2 6649 . . . . . 6 (𝑘 = 𝑌 → (𝐹𝑘) = (𝐹𝑌))
87eleq2d 2878 . . . . 5 (𝑘 = 𝑌 → (𝑂 ∈ (𝐹𝑘) ↔ 𝑂 ∈ (𝐹𝑌)))
96, 8syl5ibrcom 250 . . . 4 ((𝜑𝑘𝐴) → (𝑘 = 𝑌𝑂 ∈ (𝐹𝑘)))
109imp 410 . . 3 (((𝜑𝑘𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹𝑘))
112ffvelrnda 6832 . . . . 5 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ Top)
12 eqid 2801 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
1312topopn 21515 . . . . 5 ((𝐹𝑘) ∈ Top → (𝐹𝑘) ∈ (𝐹𝑘))
1411, 13syl 17 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ (𝐹𝑘))
1514adantr 484 . . 3 (((𝜑𝑘𝐴) ∧ ¬ 𝑘 = 𝑌) → (𝐹𝑘) ∈ (𝐹𝑘))
1610, 15ifclda 4462 . 2 ((𝜑𝑘𝐴) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (𝐹𝑘))
17 eldifn 4058 . . . . 5 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌})
18 velsn 4544 . . . . 5 (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌)
1917, 18sylnib 331 . . . 4 (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌)
2019iffalsed 4439 . . 3 (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
2120adantl 485 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) = (𝐹𝑘))
221, 2, 4, 16, 21ptopn 22192 1 (𝜑X𝑘𝐴 if(𝑘 = 𝑌, 𝑂, (𝐹𝑘)) ∈ (∏t𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2112  cdif 3881  ifcif 4428  {csn 4528   cuni 4803  wf 6324  cfv 6328  Xcixp 8448  Fincfn 8496  tcpt 16708  Topctop 21502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-ixp 8449  df-en 8497  df-fin 8500  df-fi 8863  df-topgen 16713  df-pt 16714  df-top 21503  df-bases 21555
This theorem is referenced by:  ptcld  22222
  Copyright terms: Public domain W3C validator