Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptopn2 | Structured version Visualization version GIF version |
Description: A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptopn2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptopn2.f | ⊢ (𝜑 → 𝐹:𝐴⟶Top) |
ptopn2.o | ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) |
Ref | Expression |
---|---|
ptopn2 | ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptopn2.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ptopn2.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶Top) | |
3 | snfi 8909 | . . 3 ⊢ {𝑌} ∈ Fin | |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → {𝑌} ∈ Fin) |
5 | ptopn2.o | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) | |
6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑂 ∈ (𝐹‘𝑌)) |
7 | fveq2 6825 | . . . . . 6 ⊢ (𝑘 = 𝑌 → (𝐹‘𝑘) = (𝐹‘𝑌)) | |
8 | 7 | eleq2d 2822 | . . . . 5 ⊢ (𝑘 = 𝑌 → (𝑂 ∈ (𝐹‘𝑘) ↔ 𝑂 ∈ (𝐹‘𝑌))) |
9 | 6, 8 | syl5ibrcom 246 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 = 𝑌 → 𝑂 ∈ (𝐹‘𝑘))) |
10 | 9 | imp 407 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑘 = 𝑌) → 𝑂 ∈ (𝐹‘𝑘)) |
11 | 2 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ Top) |
12 | eqid 2736 | . . . . . 6 ⊢ ∪ (𝐹‘𝑘) = ∪ (𝐹‘𝑘) | |
13 | 12 | topopn 22161 | . . . . 5 ⊢ ((𝐹‘𝑘) ∈ Top → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
15 | 14 | adantr 481 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝑘 = 𝑌) → ∪ (𝐹‘𝑘) ∈ (𝐹‘𝑘)) |
16 | 10, 15 | ifclda 4508 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (𝐹‘𝑘)) |
17 | eldifn 4074 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 ∈ {𝑌}) | |
18 | velsn 4589 | . . . . 5 ⊢ (𝑘 ∈ {𝑌} ↔ 𝑘 = 𝑌) | |
19 | 17, 18 | sylnib 327 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → ¬ 𝑘 = 𝑌) |
20 | 19 | iffalsed 4484 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∖ {𝑌}) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
21 | 20 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑌})) → if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) = ∪ (𝐹‘𝑘)) |
22 | 1, 2, 4, 16, 21 | ptopn 22840 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3895 ifcif 4473 {csn 4573 ∪ cuni 4852 ⟶wf 6475 ‘cfv 6479 Xcixp 8756 Fincfn 8804 ∏tcpt 17246 Topctop 22148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-om 7781 df-1o 8367 df-er 8569 df-ixp 8757 df-en 8805 df-fin 8808 df-fi 9268 df-topgen 17251 df-pt 17252 df-top 22149 df-bases 22202 |
This theorem is referenced by: ptcld 22870 |
Copyright terms: Public domain | W3C validator |