| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkotop | Structured version Visualization version GIF version | ||
| Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| xkotop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 2 | eqid 2729 | . . 3 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} | |
| 3 | eqid 2729 | . . 3 ⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
| 4 | 1, 2, 3 | xkoval 23474 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
| 5 | fibas 22864 | . . 3 ⊢ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ TopBases | |
| 6 | tgcl 22856 | . . 3 ⊢ ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ TopBases → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ∈ Top) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ∈ Top |
| 8 | 4, 7 | eqeltrdi 2836 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ran crn 5639 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ficfi 9361 ↾t crest 17383 topGenctg 17400 Topctop 22780 TopBasesctb 22832 Cn ccn 23111 Compccmp 23273 ↑ko cxko 23448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-en 8919 df-fin 8922 df-fi 9362 df-topgen 17406 df-top 22781 df-bases 22833 df-xko 23450 |
| This theorem is referenced by: xkotopon 23487 xkohaus 23540 xkoptsub 23541 xkococnlem 23546 xkococn 23547 xkohmeo 23702 |
| Copyright terms: Public domain | W3C validator |