| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkotop | Structured version Visualization version GIF version | ||
| Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| xkotop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 2 | eqid 2731 | . . 3 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} | |
| 3 | eqid 2731 | . . 3 ⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
| 4 | 1, 2, 3 | xkoval 23502 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
| 5 | fibas 22892 | . . 3 ⊢ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ TopBases | |
| 6 | tgcl 22884 | . . 3 ⊢ ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ TopBases → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ∈ Top) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ∈ Top |
| 8 | 4, 7 | eqeltrdi 2839 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 ran crn 5615 “ cima 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ficfi 9294 ↾t crest 17324 topGenctg 17341 Topctop 22808 TopBasesctb 22860 Cn ccn 23139 Compccmp 23301 ↑ko cxko 23476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-en 8870 df-fin 8873 df-fi 9295 df-topgen 17347 df-top 22809 df-bases 22861 df-xko 23478 |
| This theorem is referenced by: xkotopon 23515 xkohaus 23568 xkoptsub 23569 xkococnlem 23574 xkococn 23575 xkohmeo 23730 |
| Copyright terms: Public domain | W3C validator |