![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xkotop | Structured version Visualization version GIF version |
Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
xkotop | β’ ((π β Top β§ π β Top) β (π βko π ) β Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ βͺ π = βͺ π | |
2 | eqid 2732 | . . 3 β’ {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp} = {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp} | |
3 | eqid 2732 | . . 3 β’ (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£}) = (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£}) | |
4 | 1, 2, 3 | xkoval 23311 | . 2 β’ ((π β Top β§ π β Top) β (π βko π ) = (topGenβ(fiβran (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£})))) |
5 | fibas 22700 | . . 3 β’ (fiβran (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£})) β TopBases | |
6 | tgcl 22692 | . . 3 β’ ((fiβran (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£})) β TopBases β (topGenβ(fiβran (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£}))) β Top) | |
7 | 5, 6 | ax-mp 5 | . 2 β’ (topGenβ(fiβran (π β {π₯ β π« βͺ π β£ (π βΎt π₯) β Comp}, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£}))) β Top |
8 | 4, 7 | eqeltrdi 2841 | 1 β’ ((π β Top β§ π β Top) β (π βko π ) β Top) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 {crab 3432 β wss 3948 π« cpw 4602 βͺ cuni 4908 ran crn 5677 β cima 5679 βcfv 6543 (class class class)co 7411 β cmpo 7413 ficfi 9407 βΎt crest 17370 topGenctg 17387 Topctop 22615 TopBasesctb 22668 Cn ccn 22948 Compccmp 23110 βko cxko 23285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-en 8942 df-fin 8945 df-fi 9408 df-topgen 17393 df-top 22616 df-bases 22669 df-xko 23287 |
This theorem is referenced by: xkotopon 23324 xkohaus 23377 xkoptsub 23378 xkococnlem 23383 xkococn 23384 xkohmeo 23539 |
Copyright terms: Public domain | W3C validator |