![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xkotop | Structured version Visualization version GIF version |
Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
xkotop | ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ ∪ 𝑅 = ∪ 𝑅 | |
2 | eqid 2726 | . . 3 ⊢ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp} | |
3 | eqid 2726 | . . 3 ⊢ (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
4 | 1, 2, 3 | xkoval 23585 | . 2 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
5 | fibas 22974 | . . 3 ⊢ (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ TopBases | |
6 | tgcl 22966 | . . 3 ⊢ ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) ∈ TopBases → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ∈ Top) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}))) ∈ Top |
8 | 4, 7 | eqeltrdi 2834 | 1 ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 {crab 3419 ⊆ wss 3947 𝒫 cpw 4607 ∪ cuni 4915 ran crn 5685 “ cima 5687 ‘cfv 6556 (class class class)co 7426 ∈ cmpo 7428 ficfi 9455 ↾t crest 17437 topGenctg 17454 Topctop 22889 TopBasesctb 22942 Cn ccn 23222 Compccmp 23384 ↑ko cxko 23559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-en 8977 df-fin 8980 df-fi 9456 df-topgen 17460 df-top 22890 df-bases 22943 df-xko 23561 |
This theorem is referenced by: xkotopon 23598 xkohaus 23651 xkoptsub 23652 xkococnlem 23657 xkococn 23658 xkohmeo 23813 |
Copyright terms: Public domain | W3C validator |