MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkotop Structured version   Visualization version   GIF version

Theorem xkotop 23531
Description: The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
xkotop ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)

Proof of Theorem xkotop
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 𝑅 = 𝑅
2 eqid 2736 . . 3 {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}
3 eqid 2736 . . 3 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
41, 2, 3xkoval 23530 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
5 fibas 22920 . . 3 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ TopBases
6 tgcl 22912 . . 3 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ TopBases → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) ∈ Top)
75, 6ax-mp 5 . 2 (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) ∈ Top
84, 7eqeltrdi 2843 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3420  wss 3931  𝒫 cpw 4580   cuni 4888  ran crn 5660  cima 5662  cfv 6536  (class class class)co 7410  cmpo 7412  ficfi 9427  t crest 17439  topGenctg 17456  Topctop 22836  TopBasesctb 22888   Cn ccn 23167  Compccmp 23329  ko cxko 23504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-en 8965  df-fin 8968  df-fi 9428  df-topgen 17462  df-top 22837  df-bases 22889  df-xko 23506
This theorem is referenced by:  xkotopon  23543  xkohaus  23596  xkoptsub  23597  xkococnlem  23602  xkococn  23603  xkohmeo  23758
  Copyright terms: Public domain W3C validator