![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpabs | Structured version Visualization version GIF version |
Description: Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infxpabs | ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxpdom 10205 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐵) ≼ 𝐴) | |
2 | 1 | 3expa 1115 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐵) ≼ 𝐴) |
3 | 2 | adantrl 713 | . 2 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≼ 𝐴) |
4 | simpll 764 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐴 ∈ dom card) | |
5 | numdom 10032 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | |
6 | 5 | ad2ant2rl 746 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐵 ∈ dom card) |
7 | simprl 768 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐵 ≠ ∅) | |
8 | xpdom3 9069 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) | |
9 | 4, 6, 7, 8 | syl3anc 1368 | . 2 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≼ (𝐴 × 𝐵)) |
10 | sbth 9092 | . 2 ⊢ (((𝐴 × 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≈ 𝐴) | |
11 | 3, 9, 10 | syl2anc 583 | 1 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ≠ wne 2934 ∅c0 4317 class class class wbr 5141 × cxp 5667 dom cdm 5669 ωcom 7851 ≈ cen 8935 ≼ cdom 8936 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-oi 9504 df-card 9933 |
This theorem is referenced by: infxp 10209 infmap2 10212 |
Copyright terms: Public domain | W3C validator |