![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infxpabs | Structured version Visualization version GIF version |
Description: Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
infxpabs | ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxpdom 10242 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐵) ≼ 𝐴) | |
2 | 1 | 3expa 1115 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐵) ≼ 𝐴) |
3 | 2 | adantrl 714 | . 2 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≼ 𝐴) |
4 | simpll 765 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐴 ∈ dom card) | |
5 | numdom 10069 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | |
6 | 5 | ad2ant2rl 747 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐵 ∈ dom card) |
7 | simprl 769 | . . 3 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐵 ≠ ∅) | |
8 | xpdom3 9101 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵)) | |
9 | 4, 6, 7, 8 | syl3anc 1368 | . 2 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≼ (𝐴 × 𝐵)) |
10 | sbth 9124 | . 2 ⊢ (((𝐴 × 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≈ 𝐴) | |
11 | 3, 9, 10 | syl2anc 582 | 1 ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2937 ∅c0 4326 class class class wbr 5152 × cxp 5680 dom cdm 5682 ωcom 7876 ≈ cen 8967 ≼ cdom 8968 cardccrd 9966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-oi 9541 df-card 9970 |
This theorem is referenced by: infxp 10246 infmap2 10249 |
Copyright terms: Public domain | W3C validator |