MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpabs Structured version   Visualization version   GIF version

Theorem infxpabs 10251
Description: Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infxpabs (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)

Proof of Theorem infxpabs
StepHypRef Expression
1 infxpdom 10250 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 × 𝐵) ≼ 𝐴)
213expa 1119 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝐵𝐴) → (𝐴 × 𝐵) ≼ 𝐴)
32adantrl 716 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≼ 𝐴)
4 simpll 767 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐴 ∈ dom card)
5 numdom 10078 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
65ad2ant2rl 749 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐵 ∈ dom card)
7 simprl 771 . . 3 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐵 ≠ ∅)
8 xpdom3 9110 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 × 𝐵))
94, 6, 7, 8syl3anc 1373 . 2 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → 𝐴 ≼ (𝐴 × 𝐵))
10 sbth 9133 . 2 (((𝐴 × 𝐵) ≼ 𝐴𝐴 ≼ (𝐴 × 𝐵)) → (𝐴 × 𝐵) ≈ 𝐴)
113, 9, 10syl2anc 584 1 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵𝐴)) → (𝐴 × 𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2940  c0 4333   class class class wbr 5143   × cxp 5683  dom cdm 5685  ωcom 7887  cen 8982  cdom 8983  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-card 9979
This theorem is referenced by:  infxp  10254  infmap2  10257
  Copyright terms: Public domain W3C validator