| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dib0 | Structured version Visualization version GIF version | ||
| Description: The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.) |
| Ref | Expression |
|---|---|
| dib0.z | ⊢ 0 = (0.‘𝐾) |
| dib0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dib0.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| dib0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dib0.o | ⊢ 𝑂 = (0g‘𝑈) |
| Ref | Expression |
|---|---|
| dib0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
| 2 | resiexg 7842 | . . . 4 ⊢ ((Base‘𝐾) ∈ V → ( I ↾ (Base‘𝐾)) ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ (Base‘𝐾)) ∈ V |
| 4 | fvex 6835 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
| 5 | 4 | mptex 7157 | . . 3 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ V |
| 6 | 3, 5 | xpsn 7074 | . 2 ⊢ ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) = {〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉} |
| 7 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 8 | hlop 39400 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
| 10 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | dib0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 12 | 10, 11 | op0cl 39222 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 13 | 9, 12 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
| 14 | dib0.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 15 | 10, 14 | lhpbase 40036 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 16 | eqid 2731 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 17 | 10, 16, 11 | op0le 39224 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
| 18 | 8, 15, 17 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
| 19 | eqid 2731 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 20 | eqid 2731 | . . . . 5 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
| 21 | eqid 2731 | . . . . 5 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 22 | dib0.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 23 | 10, 16, 14, 19, 20, 21, 22 | dibval2 41182 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊)) → (𝐼‘ 0 ) = ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 24 | 7, 13, 18, 23 | syl12anc 836 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 25 | 10, 11, 14, 21 | dia0 41090 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((DIsoA‘𝐾)‘𝑊)‘ 0 ) = {( I ↾ (Base‘𝐾))}) |
| 26 | 25 | xpeq1d 5645 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) = ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 27 | 24, 26 | eqtrd 2766 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
| 28 | dib0.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 29 | dib0.o | . . . 4 ⊢ 𝑂 = (0g‘𝑈) | |
| 30 | 10, 14, 19, 28, 29, 20 | dvh0g 41149 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 = 〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
| 31 | 30 | sneqd 4588 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑂} = {〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}) |
| 32 | 6, 27, 31 | 3eqtr4a 2792 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 〈cop 4582 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 × cxp 5614 ↾ cres 5618 ‘cfv 6481 Basecbs 17117 lecple 17165 0gc0g 17340 0.cp0 18324 OPcops 39210 HLchlt 39388 LHypclh 40022 LTrncltrn 40139 DIsoAcdia 41066 DVecHcdvh 41116 DIsoBcdib 41176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-riotaBAD 38991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20644 df-lmod 20793 df-lvec 21035 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-lplanes 39537 df-lvols 39538 df-lines 39539 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 df-tendo 40793 df-edring 40795 df-disoa 41067 df-dvech 41117 df-dib 41177 |
| This theorem is referenced by: dihvalcqat 41277 dih0 41318 |
| Copyright terms: Public domain | W3C validator |