![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dib0 | Structured version Visualization version GIF version |
Description: The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.) |
Ref | Expression |
---|---|
dib0.z | ⊢ 0 = (0.‘𝐾) |
dib0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dib0.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
dib0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dib0.o | ⊢ 𝑂 = (0g‘𝑈) |
Ref | Expression |
---|---|
dib0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6446 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
2 | resiexg 7364 | . . . 4 ⊢ ((Base‘𝐾) ∈ V → ( I ↾ (Base‘𝐾)) ∈ V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ (Base‘𝐾)) ∈ V |
4 | fvex 6446 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
5 | 4 | mptex 6742 | . . 3 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ V |
6 | 3, 5 | xpsn 6657 | . 2 ⊢ ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) = {〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉} |
7 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | hlop 35437 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 474 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
10 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | dib0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
12 | 10, 11 | op0cl 35259 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
13 | 9, 12 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
14 | dib0.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | 10, 14 | lhpbase 36073 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
16 | eqid 2825 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
17 | 10, 16, 11 | op0le 35261 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
18 | 8, 15, 17 | syl2an 591 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
19 | eqid 2825 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
20 | eqid 2825 | . . . . 5 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
21 | eqid 2825 | . . . . 5 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
22 | dib0.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
23 | 10, 16, 14, 19, 20, 21, 22 | dibval2 37219 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊)) → (𝐼‘ 0 ) = ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
24 | 7, 13, 18, 23 | syl12anc 872 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
25 | 10, 11, 14, 21 | dia0 37127 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((DIsoA‘𝐾)‘𝑊)‘ 0 ) = {( I ↾ (Base‘𝐾))}) |
26 | 25 | xpeq1d 5371 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) = ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
27 | 24, 26 | eqtrd 2861 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
28 | dib0.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
29 | dib0.o | . . . 4 ⊢ 𝑂 = (0g‘𝑈) | |
30 | 10, 14, 19, 28, 29, 20 | dvh0g 37186 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 = 〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
31 | 30 | sneqd 4409 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑂} = {〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}) |
32 | 6, 27, 31 | 3eqtr4a 2887 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 Vcvv 3414 {csn 4397 〈cop 4403 class class class wbr 4873 ↦ cmpt 4952 I cid 5249 × cxp 5340 ↾ cres 5344 ‘cfv 6123 Basecbs 16222 lecple 16312 0gc0g 16453 0.cp0 17390 OPcops 35247 HLchlt 35425 LHypclh 36059 LTrncltrn 36176 DIsoAcdia 37103 DVecHcdvh 37153 DIsoBcdib 37213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-riotaBAD 35028 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-tpos 7617 df-undef 7664 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-5 11417 df-6 11418 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-struct 16224 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-mulr 16319 df-sca 16321 df-vsca 16322 df-0g 16455 df-proset 17281 df-poset 17299 df-plt 17311 df-lub 17327 df-glb 17328 df-join 17329 df-meet 17330 df-p0 17392 df-p1 17393 df-lat 17399 df-clat 17461 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 df-mgp 18844 df-ur 18856 df-ring 18903 df-oppr 18977 df-dvdsr 18995 df-unit 18996 df-invr 19026 df-dvr 19037 df-drng 19105 df-lmod 19221 df-lvec 19462 df-oposet 35251 df-ol 35253 df-oml 35254 df-covers 35341 df-ats 35342 df-atl 35373 df-cvlat 35397 df-hlat 35426 df-llines 35573 df-lplanes 35574 df-lvols 35575 df-lines 35576 df-psubsp 35578 df-pmap 35579 df-padd 35871 df-lhyp 36063 df-laut 36064 df-ldil 36179 df-ltrn 36180 df-trl 36234 df-tendo 36830 df-edring 36832 df-disoa 37104 df-dvech 37154 df-dib 37214 |
This theorem is referenced by: dihvalcqat 37314 dih0 37355 |
Copyright terms: Public domain | W3C validator |