![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dib0 | Structured version Visualization version GIF version |
Description: The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.) |
Ref | Expression |
---|---|
dib0.z | β’ 0 = (0.βπΎ) |
dib0.h | β’ π» = (LHypβπΎ) |
dib0.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
dib0.u | β’ π = ((DVecHβπΎ)βπ) |
dib0.o | β’ π = (0gβπ) |
Ref | Expression |
---|---|
dib0 | β’ ((πΎ β HL β§ π β π») β (πΌβ 0 ) = {π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . 4 β’ (BaseβπΎ) β V | |
2 | resiexg 7909 | . . . 4 β’ ((BaseβπΎ) β V β ( I βΎ (BaseβπΎ)) β V) | |
3 | 1, 2 | ax-mp 5 | . . 3 β’ ( I βΎ (BaseβπΎ)) β V |
4 | fvex 6904 | . . . 4 β’ ((LTrnβπΎ)βπ) β V | |
5 | 4 | mptex 7227 | . . 3 β’ (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ))) β V |
6 | 3, 5 | xpsn 7141 | . 2 β’ ({( I βΎ (BaseβπΎ))} Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))}) = {β¨( I βΎ (BaseβπΎ)), (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))β©} |
7 | id 22 | . . . 4 β’ ((πΎ β HL β§ π β π») β (πΎ β HL β§ π β π»)) | |
8 | hlop 38548 | . . . . . 6 β’ (πΎ β HL β πΎ β OP) | |
9 | 8 | adantr 480 | . . . . 5 β’ ((πΎ β HL β§ π β π») β πΎ β OP) |
10 | eqid 2731 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
11 | dib0.z | . . . . . 6 β’ 0 = (0.βπΎ) | |
12 | 10, 11 | op0cl 38370 | . . . . 5 β’ (πΎ β OP β 0 β (BaseβπΎ)) |
13 | 9, 12 | syl 17 | . . . 4 β’ ((πΎ β HL β§ π β π») β 0 β (BaseβπΎ)) |
14 | dib0.h | . . . . . 6 β’ π» = (LHypβπΎ) | |
15 | 10, 14 | lhpbase 39185 | . . . . 5 β’ (π β π» β π β (BaseβπΎ)) |
16 | eqid 2731 | . . . . . 6 β’ (leβπΎ) = (leβπΎ) | |
17 | 10, 16, 11 | op0le 38372 | . . . . 5 β’ ((πΎ β OP β§ π β (BaseβπΎ)) β 0 (leβπΎ)π) |
18 | 8, 15, 17 | syl2an 595 | . . . 4 β’ ((πΎ β HL β§ π β π») β 0 (leβπΎ)π) |
19 | eqid 2731 | . . . . 5 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
20 | eqid 2731 | . . . . 5 β’ (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ))) = (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ))) | |
21 | eqid 2731 | . . . . 5 β’ ((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) | |
22 | dib0.i | . . . . 5 β’ πΌ = ((DIsoBβπΎ)βπ) | |
23 | 10, 16, 14, 19, 20, 21, 22 | dibval2 40331 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ ( 0 β (BaseβπΎ) β§ 0 (leβπΎ)π)) β (πΌβ 0 ) = ((((DIsoAβπΎ)βπ)β 0 ) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) |
24 | 7, 13, 18, 23 | syl12anc 834 | . . 3 β’ ((πΎ β HL β§ π β π») β (πΌβ 0 ) = ((((DIsoAβπΎ)βπ)β 0 ) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) |
25 | 10, 11, 14, 21 | dia0 40239 | . . . 4 β’ ((πΎ β HL β§ π β π») β (((DIsoAβπΎ)βπ)β 0 ) = {( I βΎ (BaseβπΎ))}) |
26 | 25 | xpeq1d 5705 | . . 3 β’ ((πΎ β HL β§ π β π») β ((((DIsoAβπΎ)βπ)β 0 ) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))}) = ({( I βΎ (BaseβπΎ))} Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) |
27 | 24, 26 | eqtrd 2771 | . 2 β’ ((πΎ β HL β§ π β π») β (πΌβ 0 ) = ({( I βΎ (BaseβπΎ))} Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))})) |
28 | dib0.u | . . . 4 β’ π = ((DVecHβπΎ)βπ) | |
29 | dib0.o | . . . 4 β’ π = (0gβπ) | |
30 | 10, 14, 19, 28, 29, 20 | dvh0g 40298 | . . 3 β’ ((πΎ β HL β§ π β π») β π = β¨( I βΎ (BaseβπΎ)), (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))β©) |
31 | 30 | sneqd 4640 | . 2 β’ ((πΎ β HL β§ π β π») β {π} = {β¨( I βΎ (BaseβπΎ)), (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ (BaseβπΎ)))β©}) |
32 | 6, 27, 31 | 3eqtr4a 2797 | 1 β’ ((πΎ β HL β§ π β π») β (πΌβ 0 ) = {π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 {csn 4628 β¨cop 4634 class class class wbr 5148 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 βΎ cres 5678 βcfv 6543 Basecbs 17151 lecple 17211 0gc0g 17392 0.cp0 18383 OPcops 38358 HLchlt 38536 LHypclh 39171 LTrncltrn 39288 DIsoAcdia 40215 DVecHcdvh 40265 DIsoBcdib 40325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38139 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-proset 18255 df-poset 18273 df-plt 18290 df-lub 18306 df-glb 18307 df-join 18308 df-meet 18309 df-p0 18385 df-p1 18386 df-lat 18392 df-clat 18459 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-dvr 20296 df-drng 20506 df-lmod 20620 df-lvec 20862 df-oposet 38362 df-ol 38364 df-oml 38365 df-covers 38452 df-ats 38453 df-atl 38484 df-cvlat 38508 df-hlat 38537 df-llines 38685 df-lplanes 38686 df-lvols 38687 df-lines 38688 df-psubsp 38690 df-pmap 38691 df-padd 38983 df-lhyp 39175 df-laut 39176 df-ldil 39291 df-ltrn 39292 df-trl 39346 df-tendo 39942 df-edring 39944 df-disoa 40216 df-dvech 40266 df-dib 40326 |
This theorem is referenced by: dihvalcqat 40426 dih0 40467 |
Copyright terms: Public domain | W3C validator |