Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dib0 | Structured version Visualization version GIF version |
Description: The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014.) |
Ref | Expression |
---|---|
dib0.z | ⊢ 0 = (0.‘𝐾) |
dib0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dib0.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
dib0.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dib0.o | ⊢ 𝑂 = (0g‘𝑈) |
Ref | Expression |
---|---|
dib0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6675 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
2 | resiexg 7629 | . . . 4 ⊢ ((Base‘𝐾) ∈ V → ( I ↾ (Base‘𝐾)) ∈ V) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ (Base‘𝐾)) ∈ V |
4 | fvex 6675 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
5 | 4 | mptex 6982 | . . 3 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) ∈ V |
6 | 3, 5 | xpsn 6899 | . 2 ⊢ ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) = {〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉} |
7 | id 22 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | hlop 36964 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 484 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ OP) |
10 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | dib0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
12 | 10, 11 | op0cl 36786 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
13 | 9, 12 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
14 | dib0.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | 10, 14 | lhpbase 37600 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
16 | eqid 2758 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
17 | 10, 16, 11 | op0le 36788 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑊 ∈ (Base‘𝐾)) → 0 (le‘𝐾)𝑊) |
18 | 8, 15, 17 | syl2an 598 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
19 | eqid 2758 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
20 | eqid 2758 | . . . . 5 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
21 | eqid 2758 | . . . . 5 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
22 | dib0.i | . . . . 5 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
23 | 10, 16, 14, 19, 20, 21, 22 | dibval2 38746 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 0 ∈ (Base‘𝐾) ∧ 0 (le‘𝐾)𝑊)) → (𝐼‘ 0 ) = ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
24 | 7, 13, 18, 23 | syl12anc 835 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
25 | 10, 11, 14, 21 | dia0 38654 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((DIsoA‘𝐾)‘𝑊)‘ 0 ) = {( I ↾ (Base‘𝐾))}) |
26 | 25 | xpeq1d 5556 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((((DIsoA‘𝐾)‘𝑊)‘ 0 ) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}) = ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
27 | 24, 26 | eqtrd 2793 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = ({( I ↾ (Base‘𝐾))} × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})) |
28 | dib0.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
29 | dib0.o | . . . 4 ⊢ 𝑂 = (0g‘𝑈) | |
30 | 10, 14, 19, 28, 29, 20 | dvh0g 38713 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 = 〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉) |
31 | 30 | sneqd 4537 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑂} = {〈( I ↾ (Base‘𝐾)), (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))〉}) |
32 | 6, 27, 31 | 3eqtr4a 2819 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑂}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 {csn 4525 〈cop 4531 class class class wbr 5035 ↦ cmpt 5115 I cid 5432 × cxp 5525 ↾ cres 5529 ‘cfv 6339 Basecbs 16546 lecple 16635 0gc0g 16776 0.cp0 17718 OPcops 36774 HLchlt 36952 LHypclh 37586 LTrncltrn 37703 DIsoAcdia 38630 DVecHcdvh 38680 DIsoBcdib 38740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-riotaBAD 36555 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-undef 7954 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-0g 16778 df-proset 17609 df-poset 17627 df-plt 17639 df-lub 17655 df-glb 17656 df-join 17657 df-meet 17658 df-p0 17720 df-p1 17721 df-lat 17727 df-clat 17789 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-minusg 18178 df-mgp 19313 df-ur 19325 df-ring 19372 df-oppr 19449 df-dvdsr 19467 df-unit 19468 df-invr 19498 df-dvr 19509 df-drng 19577 df-lmod 19709 df-lvec 19948 df-oposet 36778 df-ol 36780 df-oml 36781 df-covers 36868 df-ats 36869 df-atl 36900 df-cvlat 36924 df-hlat 36953 df-llines 37100 df-lplanes 37101 df-lvols 37102 df-lines 37103 df-psubsp 37105 df-pmap 37106 df-padd 37398 df-lhyp 37590 df-laut 37591 df-ldil 37706 df-ltrn 37707 df-trl 37761 df-tendo 38357 df-edring 38359 df-disoa 38631 df-dvech 38681 df-dib 38741 |
This theorem is referenced by: dihvalcqat 38841 dih0 38882 |
Copyright terms: Public domain | W3C validator |