MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4a Structured version   Visualization version   GIF version

Theorem yonedalem4a 17909
Description: Lemma for yoneda 17917. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4a (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4a
StepHypRef Expression
1 yonedalem4.n . . . 4 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
21a1i 11 . . 3 (𝜑𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))))))
3 simprl 767 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
43fveq2d 6760 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
5 simprr 769 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
64, 5fveq12d 6763 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
7 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑥 = 𝑋)
87oveq2d 7271 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋))
9 simplrl 773 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
109fveq2d 6760 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
11 eqidd 2739 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
1210, 7, 11oveq123d 7276 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑋(2nd𝐹)𝑦))
1312fveq1d 6758 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑦)‘𝑔))
1413fveq1d 6758 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))
158, 14mpteq12dv 5161 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))
1615mpteq2dva 5170 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))))
176, 16mpteq12dv 5161 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
18 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
19 yonedalem21.x . . 3 (𝜑𝑋𝐵)
20 fvex 6769 . . . . 5 ((1st𝐹)‘𝑋) ∈ V
2120mptex 7081 . . . 4 (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V
2221a1i 11 . . 3 (𝜑 → (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V)
232, 17, 18, 19, 22ovmpod 7403 . 2 (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
24 simpr 484 . . . . 5 ((𝜑𝑢 = 𝐴) → 𝑢 = 𝐴)
2524fveq2d 6760 . . . 4 ((𝜑𝑢 = 𝐴) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))
2625mpteq2dv 5172 . . 3 ((𝜑𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))
2726mpteq2dv 5172 . 2 ((𝜑𝑢 = 𝐴) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
28 yonedalem4.p . 2 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
29 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3029fvexi 6770 . . . 4 𝐵 ∈ V
3130mptex 7081 . . 3 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V
3231a1i 11 . 2 (𝜑 → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V)
3323, 27, 28, 32fvmptd 6864 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  wss 3883  cop 4564  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  tpos ctpos 8012  Basecbs 16840  Hom chom 16899  Catccat 17290  Idccid 17291  Homf chomf 17292  oppCatcoppc 17337   Func cfunc 17485  func ccofu 17487   FuncCat cfuc 17574  SetCatcsetc 17706   ×c cxpc 17801   1stF c1stf 17802   2ndF c2ndf 17803   ⟨,⟩F cprf 17804   evalF cevlf 17843  HomFchof 17882  Yoncyon 17883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  yonedalem4b  17910  yonedalem4c  17911  yonffthlem  17916
  Copyright terms: Public domain W3C validator