MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4a Structured version   Visualization version   GIF version

Theorem yonedalem4a 17525
Description: Lemma for yoneda 17533. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4a (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4a
StepHypRef Expression
1 yonedalem4.n . . . 4 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
21a1i 11 . . 3 (𝜑𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))))))
3 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
43fveq2d 6665 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
64, 5fveq12d 6668 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
7 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑥 = 𝑋)
87oveq2d 7165 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋))
9 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
109fveq2d 6665 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
11 eqidd 2825 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
1210, 7, 11oveq123d 7170 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑋(2nd𝐹)𝑦))
1312fveq1d 6663 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑦)‘𝑔))
1413fveq1d 6663 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))
158, 14mpteq12dv 5137 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))
1615mpteq2dva 5147 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))))
176, 16mpteq12dv 5137 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
18 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
19 yonedalem21.x . . 3 (𝜑𝑋𝐵)
20 fvex 6674 . . . . 5 ((1st𝐹)‘𝑋) ∈ V
2120mptex 6977 . . . 4 (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V
2221a1i 11 . . 3 (𝜑 → (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V)
232, 17, 18, 19, 22ovmpod 7295 . 2 (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
24 simpr 488 . . . . 5 ((𝜑𝑢 = 𝐴) → 𝑢 = 𝐴)
2524fveq2d 6665 . . . 4 ((𝜑𝑢 = 𝐴) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))
2625mpteq2dv 5148 . . 3 ((𝜑𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))
2726mpteq2dv 5148 . 2 ((𝜑𝑢 = 𝐴) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
28 yonedalem4.p . 2 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
29 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3029fvexi 6675 . . . 4 𝐵 ∈ V
3130mptex 6977 . . 3 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V
3231a1i 11 . 2 (𝜑 → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V)
3323, 27, 28, 32fvmptd 6766 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  cun 3917  wss 3919  cop 4556  cmpt 5132  ran crn 5543  cfv 6343  (class class class)co 7149  cmpo 7151  1st c1st 7682  2nd c2nd 7683  tpos ctpos 7887  Basecbs 16483  Hom chom 16576  Catccat 16935  Idccid 16936  Homf chomf 16937  oppCatcoppc 16981   Func cfunc 17124  func ccofu 17126   FuncCat cfuc 17212  SetCatcsetc 17335   ×c cxpc 17418   1stF c1stf 17419   2ndF c2ndf 17420   ⟨,⟩F cprf 17421   evalF cevlf 17459  HomFchof 17498  Yoncyon 17499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  yonedalem4b  17526  yonedalem4c  17527  yonffthlem  17532
  Copyright terms: Public domain W3C validator