Proof of Theorem yonedalem4a
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | yonedalem4.n | . . . 4
⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝜑 → 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))))) | 
| 3 |  | simprl 770 | . . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) | 
| 4 | 3 | fveq2d 6909 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) | 
| 5 |  | simprr 772 | . . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) | 
| 6 | 4, 5 | fveq12d 6912 | . . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) | 
| 7 |  | simplrr 777 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝑋) | 
| 8 | 7 | oveq2d 7448 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋)) | 
| 9 |  | simplrl 776 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑓 = 𝐹) | 
| 10 | 9 | fveq2d 6909 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘𝐹)) | 
| 11 |  | eqidd 2737 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑦 = 𝑦) | 
| 12 | 10, 7, 11 | oveq123d 7453 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑋(2nd ‘𝐹)𝑦)) | 
| 13 | 12 | fveq1d 6907 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑦)‘𝑔)) | 
| 14 | 13 | fveq1d 6907 | . . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)) | 
| 15 | 8, 14 | mpteq12dv 5232 | . . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))) | 
| 16 | 15 | mpteq2dva 5241 | . . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) | 
| 17 | 6, 16 | mpteq12dv 5232 | . . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))))) | 
| 18 |  | yonedalem21.f | . . 3
⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) | 
| 19 |  | yonedalem21.x | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 20 |  | fvex 6918 | . . . . 5
⊢
((1st ‘𝐹)‘𝑋) ∈ V | 
| 21 | 20 | mptex 7244 | . . . 4
⊢ (𝑢 ∈ ((1st
‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V | 
| 22 | 21 | a1i 11 | . . 3
⊢ (𝜑 → (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V) | 
| 23 | 2, 17, 18, 19, 22 | ovmpod 7586 | . 2
⊢ (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))))) | 
| 24 |  | simpr 484 | . . . . 5
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → 𝑢 = 𝐴) | 
| 25 | 24 | fveq2d 6909 | . . . 4
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)) | 
| 26 | 25 | mpteq2dv 5243 | . . 3
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) | 
| 27 | 26 | mpteq2dv 5243 | . 2
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) | 
| 28 |  | yonedalem4.p | . 2
⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) | 
| 29 |  | yoneda.b | . . . . 5
⊢ 𝐵 = (Base‘𝐶) | 
| 30 | 29 | fvexi 6919 | . . . 4
⊢ 𝐵 ∈ V | 
| 31 | 30 | mptex 7244 | . . 3
⊢ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V | 
| 32 | 31 | a1i 11 | . 2
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V) | 
| 33 | 23, 27, 28, 32 | fvmptd 7022 | 1
⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |