Proof of Theorem yonedalem4a
Step | Hyp | Ref
| Expression |
1 | | yonedalem4.n |
. . . 4
⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))))) |
3 | | simprl 767 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) |
4 | 3 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
5 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) |
6 | 4, 5 | fveq12d 6763 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
7 | | simplrr 774 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝑋) |
8 | 7 | oveq2d 7271 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋)) |
9 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑓 = 𝐹) |
10 | 9 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘𝐹)) |
11 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑦 = 𝑦) |
12 | 10, 7, 11 | oveq123d 7276 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑋(2nd ‘𝐹)𝑦)) |
13 | 12 | fveq1d 6758 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑦)‘𝑔)) |
14 | 13 | fveq1d 6758 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)) |
15 | 8, 14 | mpteq12dv 5161 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))) |
16 | 15 | mpteq2dva 5170 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) |
17 | 6, 16 | mpteq12dv 5161 |
. . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))))) |
18 | | yonedalem21.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) |
19 | | yonedalem21.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
20 | | fvex 6769 |
. . . . 5
⊢
((1st ‘𝐹)‘𝑋) ∈ V |
21 | 20 | mptex 7081 |
. . . 4
⊢ (𝑢 ∈ ((1st
‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V |
22 | 21 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V) |
23 | 2, 17, 18, 19, 22 | ovmpod 7403 |
. 2
⊢ (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))))) |
24 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → 𝑢 = 𝐴) |
25 | 24 | fveq2d 6760 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)) |
26 | 25 | mpteq2dv 5172 |
. . 3
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) |
27 | 26 | mpteq2dv 5172 |
. 2
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |
28 | | yonedalem4.p |
. 2
⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) |
29 | | yoneda.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
30 | 29 | fvexi 6770 |
. . . 4
⊢ 𝐵 ∈ V |
31 | 30 | mptex 7081 |
. . 3
⊢ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V |
32 | 31 | a1i 11 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V) |
33 | 23, 27, 28, 32 | fvmptd 6864 |
1
⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |