Proof of Theorem yonedalem4a
| Step | Hyp | Ref
| Expression |
| 1 | | yonedalem4.n |
. . . 4
⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))))) |
| 3 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑓 = 𝐹) |
| 4 | 3 | fveq2d 6885 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (1st ‘𝑓) = (1st ‘𝐹)) |
| 5 | | simprr 772 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → 𝑥 = 𝑋) |
| 6 | 4, 5 | fveq12d 6888 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → ((1st ‘𝑓)‘𝑥) = ((1st ‘𝐹)‘𝑋)) |
| 7 | | simplrr 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝑋) |
| 8 | 7 | oveq2d 7426 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋)) |
| 9 | | simplrl 776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑓 = 𝐹) |
| 10 | 9 | fveq2d 6885 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘𝐹)) |
| 11 | | eqidd 2737 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → 𝑦 = 𝑦) |
| 12 | 10, 7, 11 | oveq123d 7431 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑋(2nd ‘𝐹)𝑦)) |
| 13 | 12 | fveq1d 6883 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑦)‘𝑔)) |
| 14 | 13 | fveq1d 6883 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)) |
| 15 | 8, 14 | mpteq12dv 5212 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) ∧ 𝑦 ∈ 𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))) |
| 16 | 15 | mpteq2dva 5219 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) |
| 17 | 6, 16 | mpteq12dv 5212 |
. . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑥 = 𝑋)) → (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))))) |
| 18 | | yonedalem21.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) |
| 19 | | yonedalem21.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 20 | | fvex 6894 |
. . . . 5
⊢
((1st ‘𝐹)‘𝑋) ∈ V |
| 21 | 20 | mptex 7220 |
. . . 4
⊢ (𝑢 ∈ ((1st
‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V |
| 22 | 21 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V) |
| 23 | 2, 17, 18, 19, 22 | ovmpod 7564 |
. 2
⊢ (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st ‘𝐹)‘𝑋) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))))) |
| 24 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → 𝑢 = 𝐴) |
| 25 | 24 | fveq2d 6885 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)) |
| 26 | 25 | mpteq2dv 5220 |
. . 3
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) |
| 27 | 26 | mpteq2dv 5220 |
. 2
⊢ ((𝜑 ∧ 𝑢 = 𝐴) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |
| 28 | | yonedalem4.p |
. 2
⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) |
| 29 | | yoneda.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
| 30 | 29 | fvexi 6895 |
. . . 4
⊢ 𝐵 ∈ V |
| 31 | 30 | mptex 7220 |
. . 3
⊢ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V |
| 32 | 31 | a1i 11 |
. 2
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V) |
| 33 | 23, 27, 28, 32 | fvmptd 6998 |
1
⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |