MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4a Structured version   Visualization version   GIF version

Theorem yonedalem4a 18216
Description: Lemma for yoneda 18224. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4a (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4a
StepHypRef Expression
1 yonedalem4.n . . . 4 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
21a1i 11 . . 3 (𝜑𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))))))
3 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
43fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
64, 5fveq12d 6847 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
7 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑥 = 𝑋)
87oveq2d 7385 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋))
9 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
109fveq2d 6844 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
11 eqidd 2730 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
1210, 7, 11oveq123d 7390 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑋(2nd𝐹)𝑦))
1312fveq1d 6842 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑦)‘𝑔))
1413fveq1d 6842 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))
158, 14mpteq12dv 5189 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))
1615mpteq2dva 5195 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))))
176, 16mpteq12dv 5189 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
18 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
19 yonedalem21.x . . 3 (𝜑𝑋𝐵)
20 fvex 6853 . . . . 5 ((1st𝐹)‘𝑋) ∈ V
2120mptex 7179 . . . 4 (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V
2221a1i 11 . . 3 (𝜑 → (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V)
232, 17, 18, 19, 22ovmpod 7521 . 2 (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
24 simpr 484 . . . . 5 ((𝜑𝑢 = 𝐴) → 𝑢 = 𝐴)
2524fveq2d 6844 . . . 4 ((𝜑𝑢 = 𝐴) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))
2625mpteq2dv 5196 . . 3 ((𝜑𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))
2726mpteq2dv 5196 . 2 ((𝜑𝑢 = 𝐴) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
28 yonedalem4.p . 2 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
29 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3029fvexi 6854 . . . 4 𝐵 ∈ V
3130mptex 7179 . . 3 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V
3231a1i 11 . 2 (𝜑 → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V)
3323, 27, 28, 32fvmptd 6957 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  cop 4591  cmpt 5183  ran crn 5632  cfv 6499  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181  Basecbs 17155  Hom chom 17207  Catccat 17605  Idccid 17606  Homf chomf 17607  oppCatcoppc 17652   Func cfunc 17796  func ccofu 17798   FuncCat cfuc 17887  SetCatcsetc 18017   ×c cxpc 18109   1stF c1stf 18110   2ndF c2ndf 18111   ⟨,⟩F cprf 18112   evalF cevlf 18150  HomFchof 18189  Yoncyon 18190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  yonedalem4b  18217  yonedalem4c  18218  yonffthlem  18223
  Copyright terms: Public domain W3C validator