![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yoneda | Structured version Visualization version GIF version |
Description: The Yoneda Lemma. There is a natural isomorphism between the functors π and πΈ, where π(πΉ, π) is the natural transformations from Yon(π) = Hom ( β , π) to πΉ, and πΈ(πΉ, π) = πΉ(π) is the evaluation functor. Here we need two universes to state the claim: the smaller universe π is used for forming the functor category π = πΆ op β SetCat(π), which itself does not (necessarily) live in π but instead is an element of the larger universe π. (If π is a Grothendieck universe, then it will be closed under this "presheaf" operation, and so we can set π = π in this case.) (Contributed by Mario Carneiro, 29-Jan-2017.) |
Ref | Expression |
---|---|
yoneda.y | β’ π = (YonβπΆ) |
yoneda.b | β’ π΅ = (BaseβπΆ) |
yoneda.1 | β’ 1 = (IdβπΆ) |
yoneda.o | β’ π = (oppCatβπΆ) |
yoneda.s | β’ π = (SetCatβπ) |
yoneda.t | β’ π = (SetCatβπ) |
yoneda.q | β’ π = (π FuncCat π) |
yoneda.h | β’ π» = (HomFβπ) |
yoneda.r | β’ π = ((π Γc π) FuncCat π) |
yoneda.e | β’ πΈ = (π evalF π) |
yoneda.z | β’ π = (π» βfunc ((β¨(1st βπ), tpos (2nd βπ)β© βfunc (π 2ndF π)) β¨,β©F (π 1stF π))) |
yoneda.c | β’ (π β πΆ β Cat) |
yoneda.w | β’ (π β π β π) |
yoneda.u | β’ (π β ran (Homf βπΆ) β π) |
yoneda.v | β’ (π β (ran (Homf βπ) βͺ π) β π) |
yoneda.m | β’ π = (π β (π Func π), π₯ β π΅ β¦ (π β (((1st βπ)βπ₯)(π Nat π)π) β¦ ((πβπ₯)β( 1 βπ₯)))) |
yoneda.i | β’ πΌ = (Isoβπ ) |
Ref | Expression |
---|---|
yoneda | β’ (π β π β (ππΌπΈ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yoneda.r | . . 3 β’ π = ((π Γc π) FuncCat π) | |
2 | 1 | fucbas 17958 | . 2 β’ ((π Γc π) Func π) = (Baseβπ ) |
3 | eqid 2728 | . 2 β’ (Invβπ ) = (Invβπ ) | |
4 | yoneda.y | . . . . . . 7 β’ π = (YonβπΆ) | |
5 | yoneda.b | . . . . . . 7 β’ π΅ = (BaseβπΆ) | |
6 | yoneda.1 | . . . . . . 7 β’ 1 = (IdβπΆ) | |
7 | yoneda.o | . . . . . . 7 β’ π = (oppCatβπΆ) | |
8 | yoneda.s | . . . . . . 7 β’ π = (SetCatβπ) | |
9 | yoneda.t | . . . . . . 7 β’ π = (SetCatβπ) | |
10 | yoneda.q | . . . . . . 7 β’ π = (π FuncCat π) | |
11 | yoneda.h | . . . . . . 7 β’ π» = (HomFβπ) | |
12 | yoneda.e | . . . . . . 7 β’ πΈ = (π evalF π) | |
13 | yoneda.z | . . . . . . 7 β’ π = (π» βfunc ((β¨(1st βπ), tpos (2nd βπ)β© βfunc (π 2ndF π)) β¨,β©F (π 1stF π))) | |
14 | yoneda.c | . . . . . . 7 β’ (π β πΆ β Cat) | |
15 | yoneda.w | . . . . . . 7 β’ (π β π β π) | |
16 | yoneda.u | . . . . . . 7 β’ (π β ran (Homf βπΆ) β π) | |
17 | yoneda.v | . . . . . . 7 β’ (π β (ran (Homf βπ) βͺ π) β π) | |
18 | 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17 | yonedalem1 18271 | . . . . . 6 β’ (π β (π β ((π Γc π) Func π) β§ πΈ β ((π Γc π) Func π))) |
19 | 18 | simpld 493 | . . . . 5 β’ (π β π β ((π Γc π) Func π)) |
20 | funcrcl 17856 | . . . . 5 β’ (π β ((π Γc π) Func π) β ((π Γc π) β Cat β§ π β Cat)) | |
21 | 19, 20 | syl 17 | . . . 4 β’ (π β ((π Γc π) β Cat β§ π β Cat)) |
22 | 21 | simpld 493 | . . 3 β’ (π β (π Γc π) β Cat) |
23 | 21 | simprd 494 | . . 3 β’ (π β π β Cat) |
24 | 1, 22, 23 | fuccat 17969 | . 2 β’ (π β π β Cat) |
25 | 18 | simprd 494 | . 2 β’ (π β πΈ β ((π Γc π) Func π)) |
26 | yoneda.i | . 2 β’ πΌ = (Isoβπ ) | |
27 | yoneda.m | . . 3 β’ π = (π β (π Func π), π₯ β π΅ β¦ (π β (((1st βπ)βπ₯)(π Nat π)π) β¦ ((πβπ₯)β( 1 βπ₯)))) | |
28 | eqid 2728 | . . 3 β’ (π β (π Func π), π₯ β π΅ β¦ (π’ β ((1st βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’))))) = (π β (π Func π), π₯ β π΅ β¦ (π’ β ((1st βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’))))) | |
29 | 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 27, 3, 28 | yonedainv 18280 | . 2 β’ (π β π(π(Invβπ )πΈ)(π β (π Func π), π₯ β π΅ β¦ (π’ β ((1st βπ)βπ₯) β¦ (π¦ β π΅ β¦ (π β (π¦(Hom βπΆ)π₯) β¦ (((π₯(2nd βπ)π¦)βπ)βπ’)))))) |
30 | 2, 3, 24, 19, 25, 26, 29 | inviso1 17756 | 1 β’ (π β π β (ππΌπΈ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 βͺ cun 3947 β wss 3949 β¨cop 4638 β¦ cmpt 5235 ran crn 5683 βcfv 6553 (class class class)co 7426 β cmpo 7428 1st c1st 7997 2nd c2nd 7998 tpos ctpos 8237 Basecbs 17187 Hom chom 17251 Catccat 17651 Idccid 17652 Homf chomf 17653 oppCatcoppc 17698 Invcinv 17735 Isociso 17736 Func cfunc 17847 βfunc ccofu 17849 Nat cnat 17938 FuncCat cfuc 17939 SetCatcsetc 18071 Γc cxpc 18166 1stF c1stf 18167 2ndF c2ndf 18168 β¨,β©F cprf 18169 evalF cevlf 18208 HomFchof 18247 Yoncyon 18248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-pm 8854 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-hom 17264 df-cco 17265 df-cat 17655 df-cid 17656 df-homf 17657 df-comf 17658 df-oppc 17699 df-sect 17737 df-inv 17738 df-iso 17739 df-ssc 17800 df-resc 17801 df-subc 17802 df-func 17851 df-cofu 17853 df-nat 17940 df-fuc 17941 df-setc 18072 df-xpc 18170 df-1stf 18171 df-2ndf 18172 df-prf 18173 df-evlf 18212 df-curf 18213 df-hof 18249 df-yon 18250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |