ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosmul Unicode version

Theorem cosmul 11794
Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11786 and cossub 11790. (Contributed by David A. Wheeler, 26-May-2015.)
Assertion
Ref Expression
cosmul  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )

Proof of Theorem cosmul
StepHypRef Expression
1 coscl 11756 . . . . 5  |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
2 coscl 11756 . . . . 5  |-  ( B  e.  CC  ->  ( cos `  B )  e.  CC )
3 mulcl 7973 . . . . 5  |-  ( ( ( cos `  A
)  e.  CC  /\  ( cos `  B )  e.  CC )  -> 
( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
41, 2, 3syl2an 289 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC )
5 2cn 9025 . . . . 5  |-  2  e.  CC
6 2ap0 9047 . . . . 5  |-  2 #  0
75, 6pm3.2i 272 . . . 4  |-  ( 2  e.  CC  /\  2 #  0 )
8 3anass 984 . . . 4  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  <->  ( ( ( cos `  A )  x.  ( cos `  B
) )  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) ) )
94, 7, 8sylanblrc 416 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( cos `  A )  x.  ( cos `  B ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 ) )
10 divcanap3 8690 . . 3  |-  ( ( ( ( cos `  A
)  x.  ( cos `  B ) )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  ( (
2  x.  ( ( cos `  A )  x.  ( cos `  B
) ) )  / 
2 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
119, 10syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( cos `  A
)  x.  ( cos `  B ) ) )  /  2 )  =  ( ( cos `  A
)  x.  ( cos `  B ) ) )
12 sincl 11755 . . . . . 6  |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
13 sincl 11755 . . . . . 6  |-  ( B  e.  CC  ->  ( sin `  B )  e.  CC )
14 mulcl 7973 . . . . . 6  |-  ( ( ( sin `  A
)  e.  CC  /\  ( sin `  B )  e.  CC )  -> 
( ( sin `  A
)  x.  ( sin `  B ) )  e.  CC )
1512, 13, 14syl2an 289 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  e.  CC )
164, 15, 4ppncand 8343 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( sin `  A
)  x.  ( sin `  B ) ) )  +  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) )  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( cos `  A
)  x.  ( cos `  B ) ) ) )
17 cossub 11790 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  -  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  +  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
18 cosadd 11786 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  +  B )
)  =  ( ( ( cos `  A
)  x.  ( cos `  B ) )  -  ( ( sin `  A
)  x.  ( sin `  B ) ) ) )
1917, 18oveq12d 5918 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  ( A  -  B )
)  +  ( cos `  ( A  +  B
) ) )  =  ( ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( sin `  A
)  x.  ( sin `  B ) ) )  +  ( ( ( cos `  A )  x.  ( cos `  B
) )  -  (
( sin `  A
)  x.  ( sin `  B ) ) ) ) )
2042timesd 9196 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( cos `  A
)  x.  ( cos `  B ) ) )  =  ( ( ( cos `  A )  x.  ( cos `  B
) )  +  ( ( cos `  A
)  x.  ( cos `  B ) ) ) )
2116, 19, 203eqtr4rd 2233 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( cos `  A
)  x.  ( cos `  B ) ) )  =  ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) ) )
2221oveq1d 5915 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( cos `  A
)  x.  ( cos `  B ) ) )  /  2 )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
2311, 22eqtr3d 2224 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( cos `  A
)  x.  ( cos `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4021   ` cfv 5238  (class class class)co 5900   CCcc 7844   0cc0 7846    + caddc 7849    x. cmul 7851    - cmin 8163   # cap 8573    / cdiv 8664   2c2 9005   sincsin 11693   cosccos 11694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-disj 3999  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-isom 5247  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-frec 6420  df-1o 6445  df-oadd 6449  df-er 6563  df-en 6771  df-dom 6772  df-fin 6773  df-sup 7017  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-ico 9930  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-exp 10560  df-fac 10747  df-bc 10769  df-ihash 10797  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-clim 11328  df-sumdc 11403  df-ef 11697  df-sin 11699  df-cos 11700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator