ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxltsup Unicode version

Theorem maxltsup 11222
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 10-Feb-2022.)
Assertion
Ref Expression
maxltsup  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )

Proof of Theorem maxltsup
StepHypRef Expression
1 simpl1 1000 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  A  e.  RR )
2 simpl2 1001 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  B  e.  RR )
3 maxcl 11214 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
41, 2, 3syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
5 simpl3 1002 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  C  e.  RR )
6 maxle1 11215 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  )
)
763adant3 1017 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  ) )
87adantr 276 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  A  <_  sup ( { A ,  B } ,  RR ,  <  ) )
9 simpr 110 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C )
101, 4, 5, 8, 9lelttrd 8080 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  A  <  C )
11 maxle2 11216 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <_  sup ( { A ,  B } ,  RR ,  <  )
)
121, 2, 11syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  B  <_  sup ( { A ,  B } ,  RR ,  <  ) )
132, 4, 5, 12, 9lelttrd 8080 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  B  <  C )
1410, 13jca 306 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  sup ( { A ,  B } ,  RR ,  <  )  <  C
)  ->  ( A  <  C  /\  B  < 
C ) )
15 maxabs 11213 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 ) )
16153adant3 1017 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 ) )
1716adantr 276 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
) )
18 2re 8987 . . . . . . . . . . . 12  |-  2  e.  RR
1918a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  2  e.  RR )
20 simpl3 1002 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  C  e.  RR )
2119, 20remulcld 7986 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  C )  e.  RR )
2221recnd 7984 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  C )  e.  CC )
23 simpl1 1000 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  e.  RR )
2423recnd 7984 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  e.  CC )
25 simpl2 1001 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  e.  RR )
2625recnd 7984 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  e.  CC )
2724, 26addcld 7975 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( A  +  B )  e.  CC )
2822, 27negsubdi2d 8282 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  -u ( ( 2  x.  C )  -  ( A  +  B ) )  =  ( ( A  +  B )  -  (
2  x.  C ) ) )
2923, 25readdcld 7985 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( A  +  B )  e.  RR )
3023, 25resubcld 8336 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( A  -  B )  e.  RR )
31262timesd 9159 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  B )  =  ( B  +  B
) )
3224, 26, 26pnncand 8305 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  +  B )  -  ( A  -  B ) )  =  ( B  +  B
) )
3331, 32eqtr4d 2213 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  B )  =  ( ( A  +  B )  -  ( A  -  B )
) )
34 2rp 9656 . . . . . . . . . . . 12  |-  2  e.  RR+
3534a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  2  e.  RR+ )
36 simprr 531 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  <  C )
3725, 20, 35, 36ltmul2dd 9751 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  B )  < 
( 2  x.  C
) )
3833, 37eqbrtrrd 4027 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  +  B )  -  ( A  -  B ) )  < 
( 2  x.  C
) )
3929, 30, 21, 38ltsub23d 8505 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  +  B )  -  ( 2  x.  C ) )  < 
( A  -  B
) )
4028, 39eqbrtrd 4025 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  -u ( ( 2  x.  C )  -  ( A  +  B ) )  < 
( A  -  B
) )
4124, 26, 24nppcan3d 8293 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  -  B )  +  ( A  +  B ) )  =  ( A  +  A
) )
42242timesd 9159 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  A )  =  ( A  +  A
) )
4341, 42eqtr4d 2213 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  -  B )  +  ( A  +  B ) )  =  ( 2  x.  A
) )
44 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  <  C )
4523, 20, 35, 44ltmul2dd 9751 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( 2  x.  A )  < 
( 2  x.  C
) )
4643, 45eqbrtrd 4025 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  -  B )  +  ( A  +  B ) )  < 
( 2  x.  C
) )
4730, 29, 21ltaddsubd 8500 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( (
( A  -  B
)  +  ( A  +  B ) )  <  ( 2  x.  C )  <->  ( A  -  B )  <  (
( 2  x.  C
)  -  ( A  +  B ) ) ) )
4846, 47mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( A  -  B )  <  (
( 2  x.  C
)  -  ( A  +  B ) ) )
4940, 48jca 306 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( -u (
( 2  x.  C
)  -  ( A  +  B ) )  <  ( A  -  B )  /\  ( A  -  B )  <  ( ( 2  x.  C )  -  ( A  +  B )
) ) )
5021, 29resubcld 8336 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( (
2  x.  C )  -  ( A  +  B ) )  e.  RR )
5130, 50absltd 11178 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( abs `  ( A  -  B ) )  < 
( ( 2  x.  C )  -  ( A  +  B )
)  <->  ( -u (
( 2  x.  C
)  -  ( A  +  B ) )  <  ( A  -  B )  /\  ( A  -  B )  <  ( ( 2  x.  C )  -  ( A  +  B )
) ) ) )
5249, 51mpbird 167 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( abs `  ( A  -  B
) )  <  (
( 2  x.  C
)  -  ( A  +  B ) ) )
5330recnd 7984 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( A  -  B )  e.  CC )
5453abscld 11185 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( abs `  ( A  -  B
) )  e.  RR )
5529, 54, 21ltaddsub2d 8501 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  < 
( 2  x.  C
)  <->  ( abs `  ( A  -  B )
)  <  ( (
2  x.  C )  -  ( A  +  B ) ) ) )
5652, 55mpbird 167 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  <  (
2  x.  C ) )
5729, 54readdcld 7985 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  e.  RR )
5857, 20, 35ltdivmuld 9746 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( (
( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  /  2 )  <  C  <->  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  <  (
2  x.  C ) ) )
5956, 58mpbird 167 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  ( (
( A  +  B
)  +  ( abs `  ( A  -  B
) ) )  / 
2 )  <  C
)
6017, 59eqbrtrd 4025 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C )
6114, 60impbida 596 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cpr 3593   class class class wbr 4003   ` cfv 5216  (class class class)co 5874   supcsup 6980   RRcr 7809    + caddc 7813    x. cmul 7815    < clt 7990    <_ cle 7991    - cmin 8126   -ucneg 8127    / cdiv 8627   2c2 8968   RR+crp 9651   abscabs 11001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-sup 6982  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-rp 9652  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003
This theorem is referenced by:  ltmininf  11238  xrmaxltsup  11261  suplociccreex  14033
  Copyright terms: Public domain W3C validator