ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprllem GIF version

Theorem addnqprllem 7722
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprllem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))

Proof of Theorem addnqprllem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋 <Q 𝑆)
2 ltrnqi 7616 . . . . . 6 (𝑋 <Q 𝑆 → (*Q𝑆) <Q (*Q𝑋))
3 ltrelnq 7560 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
43brel 4771 . . . . . . . . . . 11 (𝑋 <Q 𝑆 → (𝑋Q𝑆Q))
54adantl 277 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋Q𝑆Q))
65simprd 114 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑆Q)
7 recclnq 7587 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
86, 7syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑆) ∈ Q)
9 simplr 528 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋Q)
10 recclnq 7587 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑋) ∈ Q)
12 ltmnqg 7596 . . . . . . . 8 (((*Q𝑆) ∈ Q ∧ (*Q𝑋) ∈ Q𝑋Q) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
138, 11, 9, 12syl3anc 1271 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
14 ltmnqg 7596 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 277 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7571 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
179, 8, 16syl2anc 411 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
18 mulclnq 7571 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
199, 11, 18syl2anc 411 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
20 elprnql 7676 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → 𝐺Q)
2120ad2antrr 488 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝐺Q)
22 mulcomnqg 7578 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 277 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 6181 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋)) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
2513, 24bitrd 188 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
262, 25imbitrid 154 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺))
28 recidnq 7588 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 6022 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7561 . . . . . . . . 9 1QQ
31 mulcomnqg 7578 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 424 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7584 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2262 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2284 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq2d 4095 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3721, 9, 36syl2anc 411 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3827, 37mpbid 147 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺)
39 prcdnql 7679 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4039ad2antrr 488 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿)
4241ex 115 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cop 3669   class class class wbr 4083  cfv 5318  (class class class)co 6007  Qcnq 7475  1Qc1q 7476   ·Q cmq 7478  *Qcrq 7479   <Q cltq 7480  Pcnp 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-1o 6568  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-lti 7502  df-mpq 7540  df-enq 7542  df-nqqs 7543  df-mqqs 7545  df-1nqqs 7546  df-rq 7547  df-ltnqqs 7548  df-inp 7661
This theorem is referenced by:  addnqprl  7724
  Copyright terms: Public domain W3C validator