ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprllem GIF version

Theorem addnqprllem 7468
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprllem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))

Proof of Theorem addnqprllem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋 <Q 𝑆)
2 ltrnqi 7362 . . . . . 6 (𝑋 <Q 𝑆 → (*Q𝑆) <Q (*Q𝑋))
3 ltrelnq 7306 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
43brel 4656 . . . . . . . . . . 11 (𝑋 <Q 𝑆 → (𝑋Q𝑆Q))
54adantl 275 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋Q𝑆Q))
65simprd 113 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑆Q)
7 recclnq 7333 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
86, 7syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑆) ∈ Q)
9 simplr 520 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋Q)
10 recclnq 7333 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑋) ∈ Q)
12 ltmnqg 7342 . . . . . . . 8 (((*Q𝑆) ∈ Q ∧ (*Q𝑋) ∈ Q𝑋Q) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
138, 11, 9, 12syl3anc 1228 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
14 ltmnqg 7342 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7317 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
179, 8, 16syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
18 mulclnq 7317 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
199, 11, 18syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
20 elprnql 7422 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → 𝐺Q)
2120ad2antrr 480 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝐺Q)
22 mulcomnqg 7324 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 6011 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋)) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
2513, 24bitrd 187 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
262, 25syl5ib 153 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺))
28 recidnq 7334 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5857 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7307 . . . . . . . . 9 1QQ
31 mulcomnqg 7324 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 421 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7330 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2198 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2221 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq2d 3994 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3721, 9, 36syl2anc 409 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3827, 37mpbid 146 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺)
39 prcdnql 7425 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4039ad2antrr 480 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿)
4241ex 114 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  Qcnq 7221  1Qc1q 7222   ·Q cmq 7224  *Qcrq 7225   <Q cltq 7226  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407
This theorem is referenced by:  addnqprl  7470
  Copyright terms: Public domain W3C validator