ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprllem GIF version

Theorem addnqprllem 7359
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprllem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))

Proof of Theorem addnqprllem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋 <Q 𝑆)
2 ltrnqi 7253 . . . . . 6 (𝑋 <Q 𝑆 → (*Q𝑆) <Q (*Q𝑋))
3 ltrelnq 7197 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
43brel 4599 . . . . . . . . . . 11 (𝑋 <Q 𝑆 → (𝑋Q𝑆Q))
54adantl 275 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋Q𝑆Q))
65simprd 113 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑆Q)
7 recclnq 7224 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
86, 7syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑆) ∈ Q)
9 simplr 520 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋Q)
10 recclnq 7224 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑋) ∈ Q)
12 ltmnqg 7233 . . . . . . . 8 (((*Q𝑆) ∈ Q ∧ (*Q𝑋) ∈ Q𝑋Q) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
138, 11, 9, 12syl3anc 1217 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
14 ltmnqg 7233 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7208 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
179, 8, 16syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
18 mulclnq 7208 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
199, 11, 18syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
20 elprnql 7313 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → 𝐺Q)
2120ad2antrr 480 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝐺Q)
22 mulcomnqg 7215 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 5948 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋)) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
2513, 24bitrd 187 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
262, 25syl5ib 153 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺))
28 recidnq 7225 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5797 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7198 . . . . . . . . 9 1QQ
31 mulcomnqg 7215 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 421 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7221 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2173 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2195 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq2d 3949 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3721, 9, 36syl2anc 409 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3827, 37mpbid 146 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺)
39 prcdnql 7316 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4039ad2antrr 480 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿)
4241ex 114 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  Qcnq 7112  1Qc1q 7113   ·Q cmq 7115  *Qcrq 7116   <Q cltq 7117  Pcnp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298
This theorem is referenced by:  addnqprl  7361
  Copyright terms: Public domain W3C validator