ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprllem GIF version

Theorem addnqprllem 7448
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprllem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))

Proof of Theorem addnqprllem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋 <Q 𝑆)
2 ltrnqi 7342 . . . . . 6 (𝑋 <Q 𝑆 → (*Q𝑆) <Q (*Q𝑋))
3 ltrelnq 7286 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
43brel 4639 . . . . . . . . . . 11 (𝑋 <Q 𝑆 → (𝑋Q𝑆Q))
54adantl 275 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋Q𝑆Q))
65simprd 113 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑆Q)
7 recclnq 7313 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
86, 7syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑆) ∈ Q)
9 simplr 520 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋Q)
10 recclnq 7313 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑋) ∈ Q)
12 ltmnqg 7322 . . . . . . . 8 (((*Q𝑆) ∈ Q ∧ (*Q𝑋) ∈ Q𝑋Q) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
138, 11, 9, 12syl3anc 1220 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
14 ltmnqg 7322 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7297 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
179, 8, 16syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
18 mulclnq 7297 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
199, 11, 18syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
20 elprnql 7402 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → 𝐺Q)
2120ad2antrr 480 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝐺Q)
22 mulcomnqg 7304 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 5991 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋)) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
2513, 24bitrd 187 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
262, 25syl5ib 153 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺))
28 recidnq 7314 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5840 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7287 . . . . . . . . 9 1QQ
31 mulcomnqg 7304 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 421 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7310 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2190 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2212 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq2d 3978 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3721, 9, 36syl2anc 409 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3827, 37mpbid 146 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺)
39 prcdnql 7405 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4039ad2antrr 480 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿)
4241ex 114 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  cop 3563   class class class wbr 3966  cfv 5171  (class class class)co 5825  Qcnq 7201  1Qc1q 7202   ·Q cmq 7204  *Qcrq 7205   <Q cltq 7206  Pcnp 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-eprel 4250  df-id 4254  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-1o 6364  df-oadd 6368  df-omul 6369  df-er 6481  df-ec 6483  df-qs 6487  df-ni 7225  df-mi 7227  df-lti 7228  df-mpq 7266  df-enq 7268  df-nqqs 7269  df-mqqs 7271  df-1nqqs 7272  df-rq 7273  df-ltnqqs 7274  df-inp 7387
This theorem is referenced by:  addnqprl  7450
  Copyright terms: Public domain W3C validator