ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprllem GIF version

Theorem addnqprllem 7342
Description: Lemma to prove downward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprllem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))

Proof of Theorem addnqprllem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋 <Q 𝑆)
2 ltrnqi 7236 . . . . . 6 (𝑋 <Q 𝑆 → (*Q𝑆) <Q (*Q𝑋))
3 ltrelnq 7180 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
43brel 4591 . . . . . . . . . . 11 (𝑋 <Q 𝑆 → (𝑋Q𝑆Q))
54adantl 275 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋Q𝑆Q))
65simprd 113 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑆Q)
7 recclnq 7207 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
86, 7syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑆) ∈ Q)
9 simplr 519 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝑋Q)
10 recclnq 7207 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (*Q𝑋) ∈ Q)
12 ltmnqg 7216 . . . . . . . 8 (((*Q𝑆) ∈ Q ∧ (*Q𝑋) ∈ Q𝑋Q) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
138, 11, 9, 12syl3anc 1216 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ (𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋))))
14 ltmnqg 7216 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7191 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
179, 8, 16syl2anc 408 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
18 mulclnq 7191 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
199, 11, 18syl2anc 408 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
20 elprnql 7296 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → 𝐺Q)
2120ad2antrr 479 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → 𝐺Q)
22 mulcomnqg 7198 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 5940 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) <Q (𝑋 ·Q (*Q𝑋)) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
2513, 24bitrd 187 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((*Q𝑆) <Q (*Q𝑋) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
262, 25syl5ib 153 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺))
28 recidnq 7208 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5789 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7181 . . . . . . . . 9 1QQ
31 mulcomnqg 7198 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 420 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7204 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2172 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2194 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq2d 3941 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3721, 9, 36syl2anc 408 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) ↔ ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺))
3827, 37mpbid 146 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺)
39 prcdnql 7299 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4039ad2antrr 479 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → (((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) <Q 𝐺 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) ∧ 𝑋 <Q 𝑆) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿)
4241ex 114 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝐿) ∧ 𝑋Q) → (𝑋 <Q 𝑆 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cop 3530   class class class wbr 3929  cfv 5123  (class class class)co 5774  Qcnq 7095  1Qc1q 7096   ·Q cmq 7098  *Qcrq 7099   <Q cltq 7100  Pcnp 7106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7119  df-mi 7121  df-lti 7122  df-mpq 7160  df-enq 7162  df-nqqs 7163  df-mqqs 7165  df-1nqqs 7166  df-rq 7167  df-ltnqqs 7168  df-inp 7281
This theorem is referenced by:  addnqprl  7344
  Copyright terms: Public domain W3C validator