ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem Unicode version

Theorem addnqprulem 7518
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )

Proof of Theorem addnqprulem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  <Q  X )
2 ltrnqi 7411 . . . . . 6  |-  ( S 
<Q  X  ->  ( *Q
`  X )  <Q 
( *Q `  S
) )
3 simplr 528 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  X  e.  Q. )
4 recclnq 7382 . . . . . . . . 9  |-  ( X  e.  Q.  ->  ( *Q `  X )  e. 
Q. )
53, 4syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  X )  e.  Q. )
6 ltrelnq 7355 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4675 . . . . . . . . . . 11  |-  ( S 
<Q  X  ->  ( S  e.  Q.  /\  X  e.  Q. ) )
87adantl 277 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  e. 
Q.  /\  X  e.  Q. ) )
98simpld 112 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  e.  Q. )
10 recclnq 7382 . . . . . . . . 9  |-  ( S  e.  Q.  ->  ( *Q `  S )  e. 
Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  S )  e.  Q. )
12 ltmnqg 7391 . . . . . . . 8  |-  ( ( ( *Q `  X
)  e.  Q.  /\  ( *Q `  S )  e.  Q.  /\  X  e.  Q. )  ->  (
( *Q `  X
)  <Q  ( *Q `  S )  <->  ( X  .Q  ( *Q `  X
) )  <Q  ( X  .Q  ( *Q `  S ) ) ) )
135, 11, 3, 12syl3anc 1238 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( X  .Q  ( *Q `  X ) )  <Q  ( X  .Q  ( *Q `  S
) ) ) )
14 ltmnqg 7391 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
1514adantl 277 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. ) )  -> 
( y  <Q  z  <->  ( w  .Q  y ) 
<Q  ( w  .Q  z
) ) )
16 mulclnq 7366 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  X )  e.  Q. )  -> 
( X  .Q  ( *Q `  X ) )  e.  Q. )
173, 5, 16syl2anc 411 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  X ) )  e.  Q. )
18 mulclnq 7366 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  S )  e.  Q. )  -> 
( X  .Q  ( *Q `  S ) )  e.  Q. )
193, 11, 18syl2anc 411 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  S ) )  e.  Q. )
20 elprnqu 7472 . . . . . . . . 9  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  G  e.  Q. )
2120ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  e.  Q. )
22 mulcomnqg 7373 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
2322adantl 277 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
2415, 17, 19, 21, 23caovord2d 6038 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  <Q 
( X  .Q  ( *Q `  S ) )  <-> 
( ( X  .Q  ( *Q `  X ) )  .Q  G ) 
<Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
2513, 24bitrd 188 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
262, 25imbitrid 154 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  <Q  X  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
271, 26mpd 13 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
28 recidnq 7383 . . . . . . . 8  |-  ( X  e.  Q.  ->  ( X  .Q  ( *Q `  X ) )  =  1Q )
2928oveq1d 5884 . . . . . . 7  |-  ( X  e.  Q.  ->  (
( X  .Q  ( *Q `  X ) )  .Q  G )  =  ( 1Q  .Q  G
) )
30 1nq 7356 . . . . . . . . 9  |-  1Q  e.  Q.
31 mulcomnqg 7373 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  G  e.  Q. )  ->  ( 1Q  .Q  G
)  =  ( G  .Q  1Q ) )
3230, 31mpan 424 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  ( G  .Q  1Q ) )
33 mulidnq 7379 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
3432, 33eqtrd 2210 . . . . . . 7  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  G )
3529, 34sylan9eqr 2232 . . . . . 6  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  =  G )
3635breq1d 4010 . . . . 5  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G )  <->  G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3721, 3, 36syl2anc 411 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( ( X  .Q  ( *Q
`  X ) )  .Q  G )  <Q 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  <-> 
G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3827, 37mpbid 147 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
39 prcunqu 7475 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4039ad2antrr 488 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  -> 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4138, 40mpd 13 . 2  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U
)
4241ex 115 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3594   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   Q.cnq 7270   1Qc1q 7271    .Q cmq 7273   *Qcrq 7274    <Q cltq 7275   P.cnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-lti 7297  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-inp 7456
This theorem is referenced by:  addnqpru  7520
  Copyright terms: Public domain W3C validator