ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem Unicode version

Theorem addnqprulem 7329
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )

Proof of Theorem addnqprulem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  <Q  X )
2 ltrnqi 7222 . . . . . 6  |-  ( S 
<Q  X  ->  ( *Q
`  X )  <Q 
( *Q `  S
) )
3 simplr 519 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  X  e.  Q. )
4 recclnq 7193 . . . . . . . . 9  |-  ( X  e.  Q.  ->  ( *Q `  X )  e. 
Q. )
53, 4syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  X )  e.  Q. )
6 ltrelnq 7166 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4586 . . . . . . . . . . 11  |-  ( S 
<Q  X  ->  ( S  e.  Q.  /\  X  e.  Q. ) )
87adantl 275 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  e. 
Q.  /\  X  e.  Q. ) )
98simpld 111 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  e.  Q. )
10 recclnq 7193 . . . . . . . . 9  |-  ( S  e.  Q.  ->  ( *Q `  S )  e. 
Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  S )  e.  Q. )
12 ltmnqg 7202 . . . . . . . 8  |-  ( ( ( *Q `  X
)  e.  Q.  /\  ( *Q `  S )  e.  Q.  /\  X  e.  Q. )  ->  (
( *Q `  X
)  <Q  ( *Q `  S )  <->  ( X  .Q  ( *Q `  X
) )  <Q  ( X  .Q  ( *Q `  S ) ) ) )
135, 11, 3, 12syl3anc 1216 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( X  .Q  ( *Q `  X ) )  <Q  ( X  .Q  ( *Q `  S
) ) ) )
14 ltmnqg 7202 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
1514adantl 275 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. ) )  -> 
( y  <Q  z  <->  ( w  .Q  y ) 
<Q  ( w  .Q  z
) ) )
16 mulclnq 7177 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  X )  e.  Q. )  -> 
( X  .Q  ( *Q `  X ) )  e.  Q. )
173, 5, 16syl2anc 408 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  X ) )  e.  Q. )
18 mulclnq 7177 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  S )  e.  Q. )  -> 
( X  .Q  ( *Q `  S ) )  e.  Q. )
193, 11, 18syl2anc 408 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  S ) )  e.  Q. )
20 elprnqu 7283 . . . . . . . . 9  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  G  e.  Q. )
2120ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  e.  Q. )
22 mulcomnqg 7184 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
2322adantl 275 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
2415, 17, 19, 21, 23caovord2d 5933 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  <Q 
( X  .Q  ( *Q `  S ) )  <-> 
( ( X  .Q  ( *Q `  X ) )  .Q  G ) 
<Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
2513, 24bitrd 187 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
262, 25syl5ib 153 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  <Q  X  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
271, 26mpd 13 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
28 recidnq 7194 . . . . . . . 8  |-  ( X  e.  Q.  ->  ( X  .Q  ( *Q `  X ) )  =  1Q )
2928oveq1d 5782 . . . . . . 7  |-  ( X  e.  Q.  ->  (
( X  .Q  ( *Q `  X ) )  .Q  G )  =  ( 1Q  .Q  G
) )
30 1nq 7167 . . . . . . . . 9  |-  1Q  e.  Q.
31 mulcomnqg 7184 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  G  e.  Q. )  ->  ( 1Q  .Q  G
)  =  ( G  .Q  1Q ) )
3230, 31mpan 420 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  ( G  .Q  1Q ) )
33 mulidnq 7190 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
3432, 33eqtrd 2170 . . . . . . 7  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  G )
3529, 34sylan9eqr 2192 . . . . . 6  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  =  G )
3635breq1d 3934 . . . . 5  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G )  <->  G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3721, 3, 36syl2anc 408 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( ( X  .Q  ( *Q
`  X ) )  .Q  G )  <Q 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  <-> 
G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3827, 37mpbid 146 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
39 prcunqu 7286 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4039ad2antrr 479 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  -> 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4138, 40mpd 13 . 2  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U
)
4241ex 114 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   <.cop 3525   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   Q.cnq 7081   1Qc1q 7082    .Q cmq 7084   *Qcrq 7085    <Q cltq 7086   P.cnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-lti 7108  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  addnqpru  7331
  Copyright terms: Public domain W3C validator