ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem Unicode version

Theorem addnqprulem 7654
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )

Proof of Theorem addnqprulem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  <Q  X )
2 ltrnqi 7547 . . . . . 6  |-  ( S 
<Q  X  ->  ( *Q
`  X )  <Q 
( *Q `  S
) )
3 simplr 528 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  X  e.  Q. )
4 recclnq 7518 . . . . . . . . 9  |-  ( X  e.  Q.  ->  ( *Q `  X )  e. 
Q. )
53, 4syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  X )  e.  Q. )
6 ltrelnq 7491 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
76brel 4732 . . . . . . . . . . 11  |-  ( S 
<Q  X  ->  ( S  e.  Q.  /\  X  e.  Q. ) )
87adantl 277 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  e. 
Q.  /\  X  e.  Q. ) )
98simpld 112 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  S  e.  Q. )
10 recclnq 7518 . . . . . . . . 9  |-  ( S  e.  Q.  ->  ( *Q `  S )  e. 
Q. )
119, 10syl 14 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( *Q `  S )  e.  Q. )
12 ltmnqg 7527 . . . . . . . 8  |-  ( ( ( *Q `  X
)  e.  Q.  /\  ( *Q `  S )  e.  Q.  /\  X  e.  Q. )  ->  (
( *Q `  X
)  <Q  ( *Q `  S )  <->  ( X  .Q  ( *Q `  X
) )  <Q  ( X  .Q  ( *Q `  S ) ) ) )
135, 11, 3, 12syl3anc 1250 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( X  .Q  ( *Q `  X ) )  <Q  ( X  .Q  ( *Q `  S
) ) ) )
14 ltmnqg 7527 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
1514adantl 277 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. ) )  -> 
( y  <Q  z  <->  ( w  .Q  y ) 
<Q  ( w  .Q  z
) ) )
16 mulclnq 7502 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  X )  e.  Q. )  -> 
( X  .Q  ( *Q `  X ) )  e.  Q. )
173, 5, 16syl2anc 411 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  X ) )  e.  Q. )
18 mulclnq 7502 . . . . . . . . 9  |-  ( ( X  e.  Q.  /\  ( *Q `  S )  e.  Q. )  -> 
( X  .Q  ( *Q `  S ) )  e.  Q. )
193, 11, 18syl2anc 411 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( X  .Q  ( *Q `  S ) )  e.  Q. )
20 elprnqu 7608 . . . . . . . . 9  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  G  e.  Q. )
2120ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  e.  Q. )
22 mulcomnqg 7509 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
2322adantl 277 . . . . . . . 8  |-  ( ( ( ( ( <. L ,  U >.  e. 
P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  /\  (
y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
2415, 17, 19, 21, 23caovord2d 6126 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  <Q 
( X  .Q  ( *Q `  S ) )  <-> 
( ( X  .Q  ( *Q `  X ) )  .Q  G ) 
<Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
2513, 24bitrd 188 . . . . . 6  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( *Q
`  X )  <Q 
( *Q `  S
)  <->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
262, 25imbitrid 154 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( S  <Q  X  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
271, 26mpd 13 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
28 recidnq 7519 . . . . . . . 8  |-  ( X  e.  Q.  ->  ( X  .Q  ( *Q `  X ) )  =  1Q )
2928oveq1d 5969 . . . . . . 7  |-  ( X  e.  Q.  ->  (
( X  .Q  ( *Q `  X ) )  .Q  G )  =  ( 1Q  .Q  G
) )
30 1nq 7492 . . . . . . . . 9  |-  1Q  e.  Q.
31 mulcomnqg 7509 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  G  e.  Q. )  ->  ( 1Q  .Q  G
)  =  ( G  .Q  1Q ) )
3230, 31mpan 424 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  ( G  .Q  1Q ) )
33 mulidnq 7515 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
3432, 33eqtrd 2239 . . . . . . 7  |-  ( G  e.  Q.  ->  ( 1Q  .Q  G )  =  G )
3529, 34sylan9eqr 2261 . . . . . 6  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  X ) )  .Q  G )  =  G )
3635breq1d 4058 . . . . 5  |-  ( ( G  e.  Q.  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  X ) )  .Q  G )  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G )  <->  G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3721, 3, 36syl2anc 411 . . . 4  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( ( X  .Q  ( *Q
`  X ) )  .Q  G )  <Q 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  <-> 
G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G ) ) )
3827, 37mpbid 147 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  G  <Q  (
( X  .Q  ( *Q `  S ) )  .Q  G ) )
39 prcunqu 7611 . . . 4  |-  ( (
<. L ,  U >.  e. 
P.  /\  G  e.  U )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4039ad2antrr 488 . . 3  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( G  <Q  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  -> 
( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
4138, 40mpd 13 . 2  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  /\  S  <Q  X )  ->  ( ( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U
)
4241ex 115 1  |-  ( ( ( <. L ,  U >.  e.  P.  /\  G  e.  U )  /\  X  e.  Q. )  ->  ( S  <Q  X  ->  (
( X  .Q  ( *Q `  S ) )  .Q  G )  e.  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   <.cop 3638   class class class wbr 4048   ` cfv 5277  (class class class)co 5954   Q.cnq 7406   1Qc1q 7407    .Q cmq 7409   *Qcrq 7410    <Q cltq 7411   P.cnp 7417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-eprel 4341  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-1o 6512  df-oadd 6516  df-omul 6517  df-er 6630  df-ec 6632  df-qs 6636  df-ni 7430  df-mi 7432  df-lti 7433  df-mpq 7471  df-enq 7473  df-nqqs 7474  df-mqqs 7476  df-1nqqs 7477  df-rq 7478  df-ltnqqs 7479  df-inp 7592
This theorem is referenced by:  addnqpru  7656
  Copyright terms: Public domain W3C validator