ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem GIF version

Theorem addnqprulem 7648
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))

Proof of Theorem addnqprulem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑆 <Q 𝑋)
2 ltrnqi 7541 . . . . . 6 (𝑆 <Q 𝑋 → (*Q𝑋) <Q (*Q𝑆))
3 simplr 528 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑋Q)
4 recclnq 7512 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
53, 4syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (*Q𝑋) ∈ Q)
6 ltrelnq 7485 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4731 . . . . . . . . . . 11 (𝑆 <Q 𝑋 → (𝑆Q𝑋Q))
87adantl 277 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑆Q𝑋Q))
98simpld 112 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑆Q)
10 recclnq 7512 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (*Q𝑆) ∈ Q)
12 ltmnqg 7521 . . . . . . . 8 (((*Q𝑋) ∈ Q ∧ (*Q𝑆) ∈ Q𝑋Q) → ((*Q𝑋) <Q (*Q𝑆) ↔ (𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆))))
135, 11, 3, 12syl3anc 1250 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((*Q𝑋) <Q (*Q𝑆) ↔ (𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆))))
14 ltmnqg 7521 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 277 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7496 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
173, 5, 16syl2anc 411 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
18 mulclnq 7496 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
193, 11, 18syl2anc 411 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
20 elprnqu 7602 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) → 𝐺Q)
2120ad2antrr 488 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝐺Q)
22 mulcomnqg 7503 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 277 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 6123 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆)) ↔ ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
2513, 24bitrd 188 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((*Q𝑋) <Q (*Q𝑆) ↔ ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
262, 25imbitrid 154 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺))
28 recidnq 7513 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5966 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7486 . . . . . . . . 9 1QQ
31 mulcomnqg 7503 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 424 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7509 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2239 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2261 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq1d 4057 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ↔ 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
3721, 3, 36syl2anc 411 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ↔ 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
3827, 37mpbid 147 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺))
39 prcunqu 7605 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) → (𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
4039ad2antrr 488 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈)
4241ex 115 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cop 3637   class class class wbr 4047  cfv 5276  (class class class)co 5951  Qcnq 7400  1Qc1q 7401   ·Q cmq 7403  *Qcrq 7404   <Q cltq 7405  Pcnp 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-mi 7426  df-lti 7427  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-inp 7586
This theorem is referenced by:  addnqpru  7650
  Copyright terms: Public domain W3C validator