ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem GIF version

Theorem addnqprulem 7477
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))

Proof of Theorem addnqprulem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑆 <Q 𝑋)
2 ltrnqi 7370 . . . . . 6 (𝑆 <Q 𝑋 → (*Q𝑋) <Q (*Q𝑆))
3 simplr 525 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑋Q)
4 recclnq 7341 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
53, 4syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (*Q𝑋) ∈ Q)
6 ltrelnq 7314 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4661 . . . . . . . . . . 11 (𝑆 <Q 𝑋 → (𝑆Q𝑋Q))
87adantl 275 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑆Q𝑋Q))
98simpld 111 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑆Q)
10 recclnq 7341 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (*Q𝑆) ∈ Q)
12 ltmnqg 7350 . . . . . . . 8 (((*Q𝑋) ∈ Q ∧ (*Q𝑆) ∈ Q𝑋Q) → ((*Q𝑋) <Q (*Q𝑆) ↔ (𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆))))
135, 11, 3, 12syl3anc 1233 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((*Q𝑋) <Q (*Q𝑆) ↔ (𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆))))
14 ltmnqg 7350 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7325 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
173, 5, 16syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
18 mulclnq 7325 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
193, 11, 18syl2anc 409 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
20 elprnqu 7431 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) → 𝐺Q)
2120ad2antrr 485 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝐺Q)
22 mulcomnqg 7332 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 275 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 6019 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆)) ↔ ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
2513, 24bitrd 187 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((*Q𝑋) <Q (*Q𝑆) ↔ ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
262, 25syl5ib 153 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺))
28 recidnq 7342 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5865 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7315 . . . . . . . . 9 1QQ
31 mulcomnqg 7332 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 422 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7338 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2203 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2225 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq1d 3997 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ↔ 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
3721, 3, 36syl2anc 409 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ↔ 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
3827, 37mpbid 146 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺))
39 prcunqu 7434 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) → (𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
4039ad2antrr 485 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈)
4241ex 114 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  cop 3584   class class class wbr 3987  cfv 5196  (class class class)co 5850  Qcnq 7229  1Qc1q 7230   ·Q cmq 7232  *Qcrq 7233   <Q cltq 7234  Pcnp 7240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-mi 7255  df-lti 7256  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-inp 7415
This theorem is referenced by:  addnqpru  7479
  Copyright terms: Public domain W3C validator