ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqprulem GIF version

Theorem addnqprulem 7530
Description: Lemma to prove upward closure in positive real addition. (Contributed by Jim Kingdon, 7-Dec-2019.)
Assertion
Ref Expression
addnqprulem (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))

Proof of Theorem addnqprulem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑆 <Q 𝑋)
2 ltrnqi 7423 . . . . . 6 (𝑆 <Q 𝑋 → (*Q𝑋) <Q (*Q𝑆))
3 simplr 528 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑋Q)
4 recclnq 7394 . . . . . . . . 9 (𝑋Q → (*Q𝑋) ∈ Q)
53, 4syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (*Q𝑋) ∈ Q)
6 ltrelnq 7367 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4680 . . . . . . . . . . 11 (𝑆 <Q 𝑋 → (𝑆Q𝑋Q))
87adantl 277 . . . . . . . . . 10 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑆Q𝑋Q))
98simpld 112 . . . . . . . . 9 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝑆Q)
10 recclnq 7394 . . . . . . . . 9 (𝑆Q → (*Q𝑆) ∈ Q)
119, 10syl 14 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (*Q𝑆) ∈ Q)
12 ltmnqg 7403 . . . . . . . 8 (((*Q𝑋) ∈ Q ∧ (*Q𝑆) ∈ Q𝑋Q) → ((*Q𝑋) <Q (*Q𝑆) ↔ (𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆))))
135, 11, 3, 12syl3anc 1238 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((*Q𝑋) <Q (*Q𝑆) ↔ (𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆))))
14 ltmnqg 7403 . . . . . . . . 9 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
1514adantl 277 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
16 mulclnq 7378 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑋) ∈ Q) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
173, 5, 16syl2anc 411 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑋 ·Q (*Q𝑋)) ∈ Q)
18 mulclnq 7378 . . . . . . . . 9 ((𝑋Q ∧ (*Q𝑆) ∈ Q) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
193, 11, 18syl2anc 411 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑋 ·Q (*Q𝑆)) ∈ Q)
20 elprnqu 7484 . . . . . . . . 9 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) → 𝐺Q)
2120ad2antrr 488 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝐺Q)
22 mulcomnqg 7385 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2322adantl 277 . . . . . . . 8 (((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2415, 17, 19, 21, 23caovord2d 6047 . . . . . . 7 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑋)) <Q (𝑋 ·Q (*Q𝑆)) ↔ ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
2513, 24bitrd 188 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((*Q𝑋) <Q (*Q𝑆) ↔ ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
262, 25imbitrid 154 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
271, 26mpd 13 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺))
28 recidnq 7395 . . . . . . . 8 (𝑋Q → (𝑋 ·Q (*Q𝑋)) = 1Q)
2928oveq1d 5893 . . . . . . 7 (𝑋Q → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = (1Q ·Q 𝐺))
30 1nq 7368 . . . . . . . . 9 1QQ
31 mulcomnqg 7385 . . . . . . . . 9 ((1QQ𝐺Q) → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
3230, 31mpan 424 . . . . . . . 8 (𝐺Q → (1Q ·Q 𝐺) = (𝐺 ·Q 1Q))
33 mulidnq 7391 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
3432, 33eqtrd 2210 . . . . . . 7 (𝐺Q → (1Q ·Q 𝐺) = 𝐺)
3529, 34sylan9eqr 2232 . . . . . 6 ((𝐺Q𝑋Q) → ((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) = 𝐺)
3635breq1d 4015 . . . . 5 ((𝐺Q𝑋Q) → (((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ↔ 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
3721, 3, 36syl2anc 411 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (((𝑋 ·Q (*Q𝑋)) ·Q 𝐺) <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ↔ 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺)))
3827, 37mpbid 147 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → 𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺))
39 prcunqu 7487 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) → (𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
4039ad2antrr 488 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → (𝐺 <Q ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
4138, 40mpd 13 . 2 ((((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) ∧ 𝑆 <Q 𝑋) → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈)
4241ex 115 1 (((⟨𝐿, 𝑈⟩ ∈ P𝐺𝑈) ∧ 𝑋Q) → (𝑆 <Q 𝑋 → ((𝑋 ·Q (*Q𝑆)) ·Q 𝐺) ∈ 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  cop 3597   class class class wbr 4005  cfv 5218  (class class class)co 5878  Qcnq 7282  1Qc1q 7283   ·Q cmq 7285  *Qcrq 7286   <Q cltq 7287  Pcnp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-mi 7308  df-lti 7309  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-inp 7468
This theorem is referenced by:  addnqpru  7532
  Copyright terms: Public domain W3C validator