ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cats1fvnd Unicode version

Theorem cats1fvnd 11297
Description: The last symbol of a concatenation with a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) (Revised by Jim Kingdon, 20-Jan-2026.)
Hypotheses
Ref Expression
cats1cld.1  |-  T  =  ( S ++  <" X "> )
cats1fvnd.2  |-  ( ph  ->  S  e. Word  _V )
cats1fvnd.x  |-  ( ph  ->  X  e.  V )
cats1fvnd.3  |-  ( ph  ->  ( `  S )  =  M )
Assertion
Ref Expression
cats1fvnd  |-  ( ph  ->  ( T `  M
)  =  X )

Proof of Theorem cats1fvnd
StepHypRef Expression
1 cats1cld.1 . . . 4  |-  T  =  ( S ++  <" X "> )
21a1i 9 . . 3  |-  ( ph  ->  T  =  ( S ++ 
<" X "> ) )
3 cats1fvnd.2 . . . . . . 7  |-  ( ph  ->  S  e. Word  _V )
4 lencl 11075 . . . . . . 7  |-  ( S  e. Word  _V  ->  ( `  S
)  e.  NN0 )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  ( `  S )  e.  NN0 )
65nn0cnd 9424 . . . . 5  |-  ( ph  ->  ( `  S )  e.  CC )
76addlidd 8296 . . . 4  |-  ( ph  ->  ( 0  +  ( `  S ) )  =  ( `  S )
)
8 cats1fvnd.3 . . . 4  |-  ( ph  ->  ( `  S )  =  M )
97, 8eqtr2d 2263 . . 3  |-  ( ph  ->  M  =  ( 0  +  ( `  S
) ) )
102, 9fveq12d 5634 . 2  |-  ( ph  ->  ( T `  M
)  =  ( ( S ++  <" X "> ) `  ( 0  +  ( `  S
) ) ) )
11 cats1fvnd.x . . . 4  |-  ( ph  ->  X  e.  V )
12 elex 2811 . . . . 5  |-  ( X  e.  V  ->  X  e.  _V )
1312s1cld 11155 . . . 4  |-  ( X  e.  V  ->  <" X ">  e. Word  _V )
1411, 13syl 14 . . 3  |-  ( ph  ->  <" X ">  e. Word  _V )
15 s1leng 11157 . . . . . 6  |-  ( X  e.  V  ->  ( ` 
<" X "> )  =  1 )
16 1nn 9121 . . . . . 6  |-  1  e.  NN
1715, 16eqeltrdi 2320 . . . . 5  |-  ( X  e.  V  ->  ( ` 
<" X "> )  e.  NN )
18 lbfzo0 10381 . . . . 5  |-  ( 0  e.  ( 0..^ ( `  <" X "> ) )  <->  ( `  <" X "> )  e.  NN )
1917, 18sylibr 134 . . . 4  |-  ( X  e.  V  ->  0  e.  ( 0..^ ( `  <" X "> )
) )
2011, 19syl 14 . . 3  |-  ( ph  ->  0  e.  ( 0..^ ( `  <" X "> ) ) )
21 ccatval3 11134 . . 3  |-  ( ( S  e. Word  _V  /\  <" X ">  e. Word  _V  /\  0  e.  ( 0..^ ( `  <" X "> )
) )  ->  (
( S ++  <" X "> ) `  (
0  +  ( `  S
) ) )  =  ( <" X "> `  0 )
)
223, 14, 20, 21syl3anc 1271 . 2  |-  ( ph  ->  ( ( S ++  <" X "> ) `  ( 0  +  ( `  S ) ) )  =  ( <" X "> `  0 )
)
23 s1fv 11159 . . 3  |-  ( X  e.  V  ->  ( <" X "> `  0 )  =  X )
2411, 23syl 14 . 2  |-  ( ph  ->  ( <" X "> `  0 )  =  X )
2510, 22, 243eqtrd 2266 1  |-  ( ph  ->  ( T `  M
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   NNcn 9110   NN0cn0 9369  ..^cfzo 10338  ♯chash 10997  Word cword 11071   ++ cconcat 11125   <"cs1 11148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-concat 11126  df-s1 11149
This theorem is referenced by:  s2fv1g  11320
  Copyright terms: Public domain W3C validator