ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  q2txmodxeq0 Unicode version

Theorem q2txmodxeq0 10397
Description: Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.)
Assertion
Ref Expression
q2txmodxeq0  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
( ( 2  x.  X )  mod  X
)  =  0 )

Proof of Theorem q2txmodxeq0
StepHypRef Expression
1 2cnd 9005 . . . 4  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
2  e.  CC )
2 qcn 9647 . . . . 5  |-  ( X  e.  QQ  ->  X  e.  CC )
32adantr 276 . . . 4  |-  ( ( X  e.  QQ  /\  0  <  X )  ->  X  e.  CC )
4 qre 9638 . . . . . 6  |-  ( X  e.  QQ  ->  X  e.  RR )
54adantr 276 . . . . 5  |-  ( ( X  e.  QQ  /\  0  <  X )  ->  X  e.  RR )
6 simpr 110 . . . . 5  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
0  <  X )
75, 6gt0ap0d 8599 . . . 4  |-  ( ( X  e.  QQ  /\  0  <  X )  ->  X #  0 )
81, 3, 7divcanap4d 8766 . . 3  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
( ( 2  x.  X )  /  X
)  =  2 )
9 2z 9294 . . 3  |-  2  e.  ZZ
108, 9eqeltrdi 2278 . 2  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
( ( 2  x.  X )  /  X
)  e.  ZZ )
11 zq 9639 . . . . . 6  |-  ( 2  e.  ZZ  ->  2  e.  QQ )
129, 11ax-mp 5 . . . . 5  |-  2  e.  QQ
13 qmulcl 9650 . . . . 5  |-  ( ( 2  e.  QQ  /\  X  e.  QQ )  ->  ( 2  x.  X
)  e.  QQ )
1412, 13mpan 424 . . . 4  |-  ( X  e.  QQ  ->  (
2  x.  X )  e.  QQ )
1514adantr 276 . . 3  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
( 2  x.  X
)  e.  QQ )
16 simpl 109 . . 3  |-  ( ( X  e.  QQ  /\  0  <  X )  ->  X  e.  QQ )
17 modq0 10342 . . 3  |-  ( ( ( 2  x.  X
)  e.  QQ  /\  X  e.  QQ  /\  0  <  X )  ->  (
( ( 2  x.  X )  mod  X
)  =  0  <->  (
( 2  x.  X
)  /  X )  e.  ZZ ) )
1815, 16, 6, 17syl3anc 1248 . 2  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
( ( ( 2  x.  X )  mod 
X )  =  0  <-> 
( ( 2  x.  X )  /  X
)  e.  ZZ ) )
1910, 18mpbird 167 1  |-  ( ( X  e.  QQ  /\  0  <  X )  -> 
( ( 2  x.  X )  mod  X
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   CCcc 7822   RRcr 7823   0cc0 7824    x. cmul 7829    < clt 8005    / cdiv 8642   2c2 8983   ZZcz 9266   QQcq 9632    mod cmo 10335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-q 9633  df-rp 9667  df-fl 10283  df-mod 10336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator