ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrhmunit Unicode version

Theorem elrhmunit 13673
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
2 eqidd 2194 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
3 eqidd 2194 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 rhmrcl1 13651 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
54adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
6 ringsrg 13543 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
75, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
8 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
92, 3, 7, 8unitcld 13604 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
10 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2193 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
1210, 11ringidcl 13516 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
131, 4, 123syl 17 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  R )
)
14 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
15 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
16 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
17 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
183, 14, 15, 16, 17, 7isunitd 13602 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A  e.  (Unit `  R )  <->  ( A ( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
198, 18mpbid 147 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A
( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2019simpld 112 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  R ) ( 1r
`  R ) )
21 eqid 2193 . . . . 5  |-  ( ||r `  R
)  =  ( ||r `  R
)
22 eqid 2193 . . . . 5  |-  ( ||r `  S
)  =  ( ||r `  S
)
2310, 21, 22rhmdvdsr 13671 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  ( Base `  R
)  /\  ( 1r `  R )  e.  (
Base `  R )
)  /\  A ( ||r `  R ) ( 1r
`  R ) )  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
241, 9, 13, 20, 23syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
25 eqid 2193 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
2611, 25rhm1 13663 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726breq2d 4041 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2827adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2924, 28mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( 1r `  S ) )
30 rhmopp 13672 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
3130adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
32 eqid 2193 . . . . . . 7  |-  (oppr `  R
)  =  (oppr `  R
)
3332, 10opprbasg 13571 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
345, 33syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
359, 34eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  (oppr
`  R ) ) )
3613, 34eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  (oppr
`  R ) ) )
3719simprd 114 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  (oppr
`  R ) ) ( 1r `  R
) )
38 eqid 2193 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
39 eqid 2193 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
40 eqid 2193 . . . . 5  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
4138, 39, 40rhmdvdsr 13671 . . . 4  |-  ( ( ( F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) )  /\  A  e.  ( Base `  (oppr `  R
) )  /\  ( 1r `  R )  e.  ( Base `  (oppr `  R
) ) )  /\  A ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) ) )
4231, 35, 36, 37, 41syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( F `
 ( 1r `  R ) ) )
4326breq2d 4041 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4443adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4542, 44mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) )
46 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
47 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
48 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
49 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
50 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
51 rhmrcl2 13652 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
5251adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
53 ringsrg 13543 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
5452, 53syl 14 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5546, 47, 48, 49, 50, 54isunitd 13602 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )  e.  (Unit `  S )  <->  ( ( F `  A
) ( ||r `
 S ) ( 1r `  S )  /\  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
5629, 45, 55mpbir2and 946 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   Basecbs 12618   1rcur 13455  SRingcsrg 13459   Ringcrg 13492  opprcoppr 13563   ||rcdsr 13582  Unitcui 13583   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-rhm 13648
This theorem is referenced by:  rhmunitinv  13674
  Copyright terms: Public domain W3C validator