ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrhmunit Unicode version

Theorem elrhmunit 14135
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
2 eqidd 2230 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
3 eqidd 2230 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 rhmrcl1 14113 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
54adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
6 ringsrg 14005 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
75, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
8 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
92, 3, 7, 8unitcld 14066 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
10 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2229 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
1210, 11ringidcl 13978 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
131, 4, 123syl 17 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  R )
)
14 eqidd 2230 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
15 eqidd 2230 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
16 eqidd 2230 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
17 eqidd 2230 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
183, 14, 15, 16, 17, 7isunitd 14064 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A  e.  (Unit `  R )  <->  ( A ( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
198, 18mpbid 147 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A
( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2019simpld 112 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  R ) ( 1r
`  R ) )
21 eqid 2229 . . . . 5  |-  ( ||r `  R
)  =  ( ||r `  R
)
22 eqid 2229 . . . . 5  |-  ( ||r `  S
)  =  ( ||r `  S
)
2310, 21, 22rhmdvdsr 14133 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  ( Base `  R
)  /\  ( 1r `  R )  e.  (
Base `  R )
)  /\  A ( ||r `  R ) ( 1r
`  R ) )  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
241, 9, 13, 20, 23syl31anc 1274 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
25 eqid 2229 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
2611, 25rhm1 14125 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726breq2d 4094 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2827adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2924, 28mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( 1r `  S ) )
30 rhmopp 14134 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
3130adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
32 eqid 2229 . . . . . . 7  |-  (oppr `  R
)  =  (oppr `  R
)
3332, 10opprbasg 14033 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
345, 33syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
359, 34eleqtrd 2308 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  (oppr
`  R ) ) )
3613, 34eleqtrd 2308 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  (oppr
`  R ) ) )
3719simprd 114 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  (oppr
`  R ) ) ( 1r `  R
) )
38 eqid 2229 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
39 eqid 2229 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
40 eqid 2229 . . . . 5  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
4138, 39, 40rhmdvdsr 14133 . . . 4  |-  ( ( ( F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) )  /\  A  e.  ( Base `  (oppr `  R
) )  /\  ( 1r `  R )  e.  ( Base `  (oppr `  R
) ) )  /\  A ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) ) )
4231, 35, 36, 37, 41syl31anc 1274 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( F `
 ( 1r `  R ) ) )
4326breq2d 4094 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4443adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4542, 44mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) )
46 eqidd 2230 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
47 eqidd 2230 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
48 eqidd 2230 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
49 eqidd 2230 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
50 eqidd 2230 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
51 rhmrcl2 14114 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
5251adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
53 ringsrg 14005 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
5452, 53syl 14 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5546, 47, 48, 49, 50, 54isunitd 14064 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )  e.  (Unit `  S )  <->  ( ( F `  A
) ( ||r `
 S ) ( 1r `  S )  /\  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
5629, 45, 55mpbir2and 950 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   Basecbs 13027   1rcur 13917  SRingcsrg 13921   Ringcrg 13954  opprcoppr 14025   ||rcdsr 14044  Unitcui 14045   RingHom crh 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-tpos 6389  df-map 6795  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-grp 13531  df-minusg 13532  df-ghm 13773  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-rhm 14110
This theorem is referenced by:  rhmunitinv  14136
  Copyright terms: Public domain W3C validator