ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrhmunit Unicode version

Theorem elrhmunit 13809
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
2 eqidd 2197 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
3 eqidd 2197 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 rhmrcl1 13787 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
54adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
6 ringsrg 13679 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
75, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
8 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
92, 3, 7, 8unitcld 13740 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
10 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2196 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
1210, 11ringidcl 13652 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
131, 4, 123syl 17 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  R )
)
14 eqidd 2197 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
15 eqidd 2197 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
16 eqidd 2197 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
17 eqidd 2197 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
183, 14, 15, 16, 17, 7isunitd 13738 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A  e.  (Unit `  R )  <->  ( A ( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
198, 18mpbid 147 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A
( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2019simpld 112 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  R ) ( 1r
`  R ) )
21 eqid 2196 . . . . 5  |-  ( ||r `  R
)  =  ( ||r `  R
)
22 eqid 2196 . . . . 5  |-  ( ||r `  S
)  =  ( ||r `  S
)
2310, 21, 22rhmdvdsr 13807 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  ( Base `  R
)  /\  ( 1r `  R )  e.  (
Base `  R )
)  /\  A ( ||r `  R ) ( 1r
`  R ) )  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
241, 9, 13, 20, 23syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
25 eqid 2196 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
2611, 25rhm1 13799 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726breq2d 4046 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2827adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2924, 28mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( 1r `  S ) )
30 rhmopp 13808 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
3130adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
32 eqid 2196 . . . . . . 7  |-  (oppr `  R
)  =  (oppr `  R
)
3332, 10opprbasg 13707 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
345, 33syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
359, 34eleqtrd 2275 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  (oppr
`  R ) ) )
3613, 34eleqtrd 2275 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  (oppr
`  R ) ) )
3719simprd 114 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  (oppr
`  R ) ) ( 1r `  R
) )
38 eqid 2196 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
39 eqid 2196 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
40 eqid 2196 . . . . 5  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
4138, 39, 40rhmdvdsr 13807 . . . 4  |-  ( ( ( F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) )  /\  A  e.  ( Base `  (oppr `  R
) )  /\  ( 1r `  R )  e.  ( Base `  (oppr `  R
) ) )  /\  A ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) ) )
4231, 35, 36, 37, 41syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( F `
 ( 1r `  R ) ) )
4326breq2d 4046 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4443adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4542, 44mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) )
46 eqidd 2197 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
47 eqidd 2197 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
48 eqidd 2197 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
49 eqidd 2197 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
50 eqidd 2197 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
51 rhmrcl2 13788 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
5251adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
53 ringsrg 13679 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
5452, 53syl 14 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5546, 47, 48, 49, 50, 54isunitd 13738 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )  e.  (Unit `  S )  <->  ( ( F `  A
) ( ||r `
 S ) ( 1r `  S )  /\  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
5629, 45, 55mpbir2and 946 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12703   1rcur 13591  SRingcsrg 13595   Ringcrg 13628  opprcoppr 13699   ||rcdsr 13718  Unitcui 13719   RingHom crh 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-rhm 13784
This theorem is referenced by:  rhmunitinv  13810
  Copyright terms: Public domain W3C validator