Proof of Theorem elrhmunit
Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . . 4
   RingHom  Unit  

RingHom    |
2 | | eqidd 2194 |
. . . . 5
   RingHom  Unit  
          |
3 | | eqidd 2194 |
. . . . 5
   RingHom  Unit  
Unit  Unit    |
4 | | rhmrcl1 13651 |
. . . . . . 7
  RingHom 
  |
5 | 4 | adantr 276 |
. . . . . 6
   RingHom  Unit  
  |
6 | | ringsrg 13543 |
. . . . . 6

SRing |
7 | 5, 6 | syl 14 |
. . . . 5
   RingHom  Unit  
SRing |
8 | | simpr 110 |
. . . . 5
   RingHom  Unit  
Unit    |
9 | 2, 3, 7, 8 | unitcld 13604 |
. . . 4
   RingHom  Unit  
      |
10 | | eqid 2193 |
. . . . . 6
         |
11 | | eqid 2193 |
. . . . . 6
         |
12 | 10, 11 | ringidcl 13516 |
. . . . 5

          |
13 | 1, 4, 12 | 3syl 17 |
. . . 4
   RingHom  Unit  
          |
14 | | eqidd 2194 |
. . . . . . 7
   RingHom  Unit  
          |
15 | | eqidd 2194 |
. . . . . . 7
   RingHom  Unit  
 r   r    |
16 | | eqidd 2194 |
. . . . . . 7
   RingHom  Unit  
oppr  oppr    |
17 | | eqidd 2194 |
. . . . . . 7
   RingHom  Unit  
 r oppr    r oppr     |
18 | 3, 14, 15, 16, 17, 7 | isunitd 13602 |
. . . . . 6
   RingHom  Unit  
 Unit     r         r oppr            |
19 | 8, 18 | mpbid 147 |
. . . . 5
   RingHom  Unit  
   r         r oppr           |
20 | 19 | simpld 112 |
. . . 4
   RingHom  Unit  
  r         |
21 | | eqid 2193 |
. . . . 5
 r   r   |
22 | | eqid 2193 |
. . . . 5
 r   r   |
23 | 10, 21, 22 | rhmdvdsr 13671 |
. . . 4
    RingHom     
        
  r              r             |
24 | 1, 9, 13, 20, 23 | syl31anc 1252 |
. . 3
   RingHom  Unit  
      r             |
25 | | eqid 2193 |
. . . . . 6
         |
26 | 11, 25 | rhm1 13663 |
. . . . 5
  RingHom 
              |
27 | 26 | breq2d 4041 |
. . . 4
  RingHom 
       r                 r          |
28 | 27 | adantr 276 |
. . 3
   RingHom  Unit  
       r                 r          |
29 | 24, 28 | mpbid 147 |
. 2
   RingHom  Unit  
      r         |
30 | | rhmopp 13672 |
. . . . 5
  RingHom 
 oppr  RingHom oppr     |
31 | 30 | adantr 276 |
. . . 4
   RingHom  Unit  
 oppr  RingHom oppr     |
32 | | eqid 2193 |
. . . . . . 7
oppr  oppr   |
33 | 32, 10 | opprbasg 13571 |
. . . . . 6

       oppr     |
34 | 5, 33 | syl 14 |
. . . . 5
   RingHom  Unit  
       oppr     |
35 | 9, 34 | eleqtrd 2272 |
. . . 4
   RingHom  Unit  
   oppr     |
36 | 13, 34 | eleqtrd 2272 |
. . . 4
   RingHom  Unit  
       oppr     |
37 | 19 | simprd 114 |
. . . 4
   RingHom  Unit  
  r oppr          |
38 | | eqid 2193 |
. . . . 5
   oppr      oppr    |
39 | | eqid 2193 |
. . . . 5
 r oppr    r oppr    |
40 | | eqid 2193 |
. . . . 5
 r oppr    r oppr    |
41 | 38, 39, 40 | rhmdvdsr 13671 |
. . . 4
    oppr  RingHom oppr      oppr          oppr      r oppr               r oppr              |
42 | 31, 35, 36, 37, 41 | syl31anc 1252 |
. . 3
   RingHom  Unit  
      r oppr              |
43 | 26 | breq2d 4041 |
. . . 4
  RingHom 
       r oppr                  r oppr           |
44 | 43 | adantr 276 |
. . 3
   RingHom  Unit  
       r oppr                  r oppr           |
45 | 42, 44 | mpbid 147 |
. 2
   RingHom  Unit  
      r oppr          |
46 | | eqidd 2194 |
. . 3
   RingHom  Unit  
Unit  Unit    |
47 | | eqidd 2194 |
. . 3
   RingHom  Unit  
          |
48 | | eqidd 2194 |
. . 3
   RingHom  Unit  
 r   r    |
49 | | eqidd 2194 |
. . 3
   RingHom  Unit  
oppr  oppr    |
50 | | eqidd 2194 |
. . 3
   RingHom  Unit  
 r oppr    r oppr     |
51 | | rhmrcl2 13652 |
. . . . 5
  RingHom 
  |
52 | 51 | adantr 276 |
. . . 4
   RingHom  Unit  
  |
53 | | ringsrg 13543 |
. . . 4

SRing |
54 | 52, 53 | syl 14 |
. . 3
   RingHom  Unit  
SRing |
55 | 46, 47, 48, 49, 50, 54 | isunitd 13602 |
. 2
   RingHom  Unit  
     Unit         r             r oppr            |
56 | 29, 45, 55 | mpbir2and 946 |
1
   RingHom  Unit  
    Unit    |