ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrhmunit Unicode version

Theorem elrhmunit 13676
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
2 eqidd 2194 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
3 eqidd 2194 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 rhmrcl1 13654 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
54adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
6 ringsrg 13546 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
75, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
8 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
92, 3, 7, 8unitcld 13607 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
10 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2193 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
1210, 11ringidcl 13519 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
131, 4, 123syl 17 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  R )
)
14 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
15 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
16 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
17 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
183, 14, 15, 16, 17, 7isunitd 13605 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A  e.  (Unit `  R )  <->  ( A ( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
198, 18mpbid 147 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A
( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2019simpld 112 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  R ) ( 1r
`  R ) )
21 eqid 2193 . . . . 5  |-  ( ||r `  R
)  =  ( ||r `  R
)
22 eqid 2193 . . . . 5  |-  ( ||r `  S
)  =  ( ||r `  S
)
2310, 21, 22rhmdvdsr 13674 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  ( Base `  R
)  /\  ( 1r `  R )  e.  (
Base `  R )
)  /\  A ( ||r `  R ) ( 1r
`  R ) )  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
241, 9, 13, 20, 23syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
25 eqid 2193 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
2611, 25rhm1 13666 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726breq2d 4042 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2827adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2924, 28mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( 1r `  S ) )
30 rhmopp 13675 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
3130adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
32 eqid 2193 . . . . . . 7  |-  (oppr `  R
)  =  (oppr `  R
)
3332, 10opprbasg 13574 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
345, 33syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
359, 34eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  (oppr
`  R ) ) )
3613, 34eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  (oppr
`  R ) ) )
3719simprd 114 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  (oppr
`  R ) ) ( 1r `  R
) )
38 eqid 2193 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
39 eqid 2193 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
40 eqid 2193 . . . . 5  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
4138, 39, 40rhmdvdsr 13674 . . . 4  |-  ( ( ( F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) )  /\  A  e.  ( Base `  (oppr `  R
) )  /\  ( 1r `  R )  e.  ( Base `  (oppr `  R
) ) )  /\  A ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) ) )
4231, 35, 36, 37, 41syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( F `
 ( 1r `  R ) ) )
4326breq2d 4042 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4443adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4542, 44mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) )
46 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
47 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
48 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
49 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
50 eqidd 2194 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
51 rhmrcl2 13655 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
5251adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
53 ringsrg 13546 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
5452, 53syl 14 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5546, 47, 48, 49, 50, 54isunitd 13605 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )  e.  (Unit `  S )  <->  ( ( F `  A
) ( ||r `
 S ) ( 1r `  S )  /\  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
5629, 45, 55mpbir2and 946 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   Basecbs 12621   1rcur 13458  SRingcsrg 13462   Ringcrg 13495  opprcoppr 13566   ||rcdsr 13585  Unitcui 13586   RingHom crh 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-minusg 13079  df-ghm 13314  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-oppr 13567  df-dvdsr 13588  df-unit 13589  df-rhm 13651
This theorem is referenced by:  rhmunitinv  13677
  Copyright terms: Public domain W3C validator