ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrhmunit Unicode version

Theorem elrhmunit 13910
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
2 eqidd 2205 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
3 eqidd 2205 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
4 rhmrcl1 13888 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
54adantr 276 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
6 ringsrg 13780 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
75, 6syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
8 simpr 110 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
92, 3, 7, 8unitcld 13841 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
10 eqid 2204 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
11 eqid 2204 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
1210, 11ringidcl 13753 . . . . 5  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  ( Base `  R
) )
131, 4, 123syl 17 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  R )
)
14 eqidd 2205 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  =  ( 1r `  R ) )
15 eqidd 2205 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  R
)  =  ( ||r `  R
) )
16 eqidd 2205 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  R )  =  (oppr
`  R ) )
17 eqidd 2205 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) ) )
183, 14, 15, 16, 17, 7isunitd 13839 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A  e.  (Unit `  R )  <->  ( A ( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
198, 18mpbid 147 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( A
( ||r `
 R ) ( 1r `  R )  /\  A ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2019simpld 112 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  R ) ( 1r
`  R ) )
21 eqid 2204 . . . . 5  |-  ( ||r `  R
)  =  ( ||r `  R
)
22 eqid 2204 . . . . 5  |-  ( ||r `  S
)  =  ( ||r `  S
)
2310, 21, 22rhmdvdsr 13908 . . . 4  |-  ( ( ( F  e.  ( R RingHom  S )  /\  A  e.  ( Base `  R
)  /\  ( 1r `  R )  e.  (
Base `  R )
)  /\  A ( ||r `  R ) ( 1r
`  R ) )  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
241, 9, 13, 20, 23syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( F `  ( 1r `  R ) ) )
25 eqid 2204 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
2611, 25rhm1 13900 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726breq2d 4055 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2827adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 S ) ( F `  ( 1r
`  R ) )  <-> 
( F `  A
) ( ||r `
 S ) ( 1r `  S ) ) )
2924, 28mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  S
) ( 1r `  S ) )
30 rhmopp 13909 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
3130adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) ) )
32 eqid 2204 . . . . . . 7  |-  (oppr `  R
)  =  (oppr `  R
)
3332, 10opprbasg 13808 . . . . . 6  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
345, 33syl 14 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
359, 34eleqtrd 2283 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  (oppr
`  R ) ) )
3613, 34eleqtrd 2283 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  R )  e.  (
Base `  (oppr
`  R ) ) )
3719simprd 114 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A ( ||r `  (oppr
`  R ) ) ( 1r `  R
) )
38 eqid 2204 . . . . 5  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
39 eqid 2204 . . . . 5  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
40 eqid 2204 . . . . 5  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
4138, 39, 40rhmdvdsr 13908 . . . 4  |-  ( ( ( F  e.  ( (oppr
`  R ) RingHom  (oppr `  S
) )  /\  A  e.  ( Base `  (oppr `  R
) )  /\  ( 1r `  R )  e.  ( Base `  (oppr `  R
) ) )  /\  A ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) ) )
4231, 35, 36, 37, 41syl31anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( F `
 ( 1r `  R ) ) )
4326breq2d 4055 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4443adantr 276 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )
( ||r `
 (oppr
`  S ) ) ( F `  ( 1r `  R ) )  <-> 
( F `  A
) ( ||r `
 (oppr
`  S ) ) ( 1r `  S
) ) )
4542, 44mpbid 147 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) )
46 eqidd 2205 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
47 eqidd 2205 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( 1r `  S )  =  ( 1r `  S ) )
48 eqidd 2205 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  S
)  =  ( ||r `  S
) )
49 eqidd 2205 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (oppr
`  S )  =  (oppr
`  S ) )
50 eqidd 2205 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) ) )
51 rhmrcl2 13889 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
5251adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
53 ringsrg 13780 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
5452, 53syl 14 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5546, 47, 48, 49, 50, 54isunitd 13839 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  A )  e.  (Unit `  S )  <->  ( ( F `  A
) ( ||r `
 S ) ( 1r `  S )  /\  ( F `  A ) ( ||r `  (oppr `  S
) ) ( 1r
`  S ) ) ) )
5629, 45, 55mpbir2and 946 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   Basecbs 12803   1rcur 13692  SRingcsrg 13696   Ringcrg 13729  opprcoppr 13800   ||rcdsr 13819  Unitcui 13820   RingHom crh 13883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-map 6736  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-plusg 12893  df-mulr 12894  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-mhm 13262  df-grp 13306  df-minusg 13307  df-ghm 13548  df-cmn 13593  df-abl 13594  df-mgp 13654  df-ur 13693  df-srg 13697  df-ring 13731  df-oppr 13801  df-dvdsr 13822  df-unit 13823  df-rhm 13885
This theorem is referenced by:  rhmunitinv  13911
  Copyright terms: Public domain W3C validator