Proof of Theorem elrhmunit
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl 109 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | 
| 2 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) | 
| 3 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅)) | 
| 4 |   | rhmrcl1 13711 | 
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | 
| 5 | 4 | adantr 276 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) | 
| 6 |   | ringsrg 13603 | 
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | 
| 7 | 5, 6 | syl 14 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing) | 
| 8 |   | simpr 110 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅)) | 
| 9 | 2, 3, 7, 8 | unitcld 13664 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅)) | 
| 10 |   | eqid 2196 | 
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 11 |   | eqid 2196 | 
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 12 | 10, 11 | ringidcl 13576 | 
. . . . 5
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 13 | 1, 4, 12 | 3syl 17 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 14 |   | eqidd 2197 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) = (1r‘𝑅)) | 
| 15 |   | eqidd 2197 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r‘𝑅) =
(∥r‘𝑅)) | 
| 16 |   | eqidd 2197 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(oppr‘𝑅) = (oppr‘𝑅)) | 
| 17 |   | eqidd 2197 | 
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) | 
| 18 | 3, 14, 15, 16, 17, 7 | isunitd 13662 | 
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴 ∈ (Unit‘𝑅) ↔ (𝐴(∥r‘𝑅)(1r‘𝑅) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)))) | 
| 19 | 8, 18 | mpbid 147 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴(∥r‘𝑅)(1r‘𝑅) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅))) | 
| 20 | 19 | simpld 112 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘𝑅)(1r‘𝑅)) | 
| 21 |   | eqid 2196 | 
. . . . 5
⊢
(∥r‘𝑅) = (∥r‘𝑅) | 
| 22 |   | eqid 2196 | 
. . . . 5
⊢
(∥r‘𝑆) = (∥r‘𝑆) | 
| 23 | 10, 21, 22 | rhmdvdsr 13731 | 
. . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r‘𝑅)(1r‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅))) | 
| 24 | 1, 9, 13, 20, 23 | syl31anc 1252 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅))) | 
| 25 |   | eqid 2196 | 
. . . . . 6
⊢
(1r‘𝑆) = (1r‘𝑆) | 
| 26 | 11, 25 | rhm1 13723 | 
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) | 
| 27 | 26 | breq2d 4045 | 
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆))) | 
| 28 | 27 | adantr 276 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆))) | 
| 29 | 24, 28 | mpbid 147 | 
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆)) | 
| 30 |   | rhmopp 13732 | 
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) | 
| 31 | 30 | adantr 276 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) | 
| 32 |   | eqid 2196 | 
. . . . . . 7
⊢
(oppr‘𝑅) = (oppr‘𝑅) | 
| 33 | 32, 10 | opprbasg 13631 | 
. . . . . 6
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) | 
| 34 | 5, 33 | syl 14 | 
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) =
(Base‘(oppr‘𝑅))) | 
| 35 | 9, 34 | eleqtrd 2275 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈
(Base‘(oppr‘𝑅))) | 
| 36 | 13, 34 | eleqtrd 2275 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) ∈
(Base‘(oppr‘𝑅))) | 
| 37 | 19 | simprd 114 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)) | 
| 38 |   | eqid 2196 | 
. . . . 5
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) | 
| 39 |   | eqid 2196 | 
. . . . 5
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) | 
| 40 |   | eqid 2196 | 
. . . . 5
⊢
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆)) | 
| 41 | 38, 39, 40 | rhmdvdsr 13731 | 
. . . 4
⊢ (((𝐹 ∈
((oppr‘𝑅) RingHom
(oppr‘𝑆)) ∧ 𝐴 ∈
(Base‘(oppr‘𝑅)) ∧ (1r‘𝑅) ∈
(Base‘(oppr‘𝑅))) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅))) | 
| 42 | 31, 35, 36, 37, 41 | syl31anc 1252 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅))) | 
| 43 | 26 | breq2d 4045 | 
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) | 
| 44 | 43 | adantr 276 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) | 
| 45 | 42, 44 | mpbid 147 | 
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆)) | 
| 46 |   | eqidd 2197 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆)) | 
| 47 |   | eqidd 2197 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑆) = (1r‘𝑆)) | 
| 48 |   | eqidd 2197 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r‘𝑆) =
(∥r‘𝑆)) | 
| 49 |   | eqidd 2197 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(oppr‘𝑆) = (oppr‘𝑆)) | 
| 50 |   | eqidd 2197 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆))) | 
| 51 |   | rhmrcl2 13712 | 
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | 
| 52 | 51 | adantr 276 | 
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring) | 
| 53 |   | ringsrg 13603 | 
. . . 4
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) | 
| 54 | 52, 53 | syl 14 | 
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing) | 
| 55 | 46, 47, 48, 49, 50, 54 | isunitd 13662 | 
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴) ∈ (Unit‘𝑆) ↔ ((𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆) ∧ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆)))) | 
| 56 | 29, 45, 55 | mpbir2and 946 | 
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) |