ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrhmunit GIF version

Theorem elrhmunit 13989
Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 109 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 eqidd 2207 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅))
3 eqidd 2207 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅))
4 rhmrcl1 13967 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
54adantr 276 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
6 ringsrg 13859 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
75, 6syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing)
8 simpr 110 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
92, 3, 7, 8unitcld 13920 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
10 eqid 2206 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2206 . . . . . 6 (1r𝑅) = (1r𝑅)
1210, 11ringidcl 13832 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
131, 4, 123syl 17 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
14 eqidd 2207 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r𝑅) = (1r𝑅))
15 eqidd 2207 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r𝑅) = (∥r𝑅))
16 eqidd 2207 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (oppr𝑅) = (oppr𝑅))
17 eqidd 2207 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅)))
183, 14, 15, 16, 17, 7isunitd 13918 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴 ∈ (Unit‘𝑅) ↔ (𝐴(∥r𝑅)(1r𝑅) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅))))
198, 18mpbid 147 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴(∥r𝑅)(1r𝑅) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)))
2019simpld 112 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r𝑅)(1r𝑅))
21 eqid 2206 . . . . 5 (∥r𝑅) = (∥r𝑅)
22 eqid 2206 . . . . 5 (∥r𝑆) = (∥r𝑆)
2310, 21, 22rhmdvdsr 13987 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r𝑅)(1r𝑅)) → (𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)))
241, 9, 13, 20, 23syl31anc 1253 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)))
25 eqid 2206 . . . . . 6 (1r𝑆) = (1r𝑆)
2611, 25rhm1 13979 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2726breq2d 4060 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r𝑆)(1r𝑆)))
2827adantr 276 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r𝑆)(1r𝑆)))
2924, 28mpbid 147 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r𝑆)(1r𝑆))
30 rhmopp 13988 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
3130adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
32 eqid 2206 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
3332, 10opprbasg 13887 . . . . . 6 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘(oppr𝑅)))
345, 33syl 14 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘(oppr𝑅)))
359, 34eleqtrd 2285 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘(oppr𝑅)))
3613, 34eleqtrd 2285 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r𝑅) ∈ (Base‘(oppr𝑅)))
3719simprd 114 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘(oppr𝑅))(1r𝑅))
38 eqid 2206 . . . . 5 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
39 eqid 2206 . . . . 5 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
40 eqid 2206 . . . . 5 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
4138, 39, 40rhmdvdsr 13987 . . . 4 (((𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)) ∧ 𝐴 ∈ (Base‘(oppr𝑅)) ∧ (1r𝑅) ∈ (Base‘(oppr𝑅))) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)))
4231, 35, 36, 37, 41syl31anc 1253 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)))
4326breq2d 4060 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
4443adantr 276 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
4542, 44mpbid 147 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆))
46 eqidd 2207 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆))
47 eqidd 2207 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r𝑆) = (1r𝑆))
48 eqidd 2207 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r𝑆) = (∥r𝑆))
49 eqidd 2207 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (oppr𝑆) = (oppr𝑆))
50 eqidd 2207 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆)))
51 rhmrcl2 13968 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
5251adantr 276 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring)
53 ringsrg 13859 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
5452, 53syl 14 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing)
5546, 47, 48, 49, 50, 54isunitd 13918 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴) ∈ (Unit‘𝑆) ↔ ((𝐹𝐴)(∥r𝑆)(1r𝑆) ∧ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆))))
5629, 45, 55mpbir2and 947 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4048  cfv 5277  (class class class)co 5954  Basecbs 12882  1rcur 13771  SRingcsrg 13775  Ringcrg 13808  opprcoppr 13879  rcdsr 13898  Unitcui 13899   RingHom crh 13962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-tpos 6341  df-map 6747  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-mhm 13341  df-grp 13385  df-minusg 13386  df-ghm 13627  df-cmn 13672  df-abl 13673  df-mgp 13733  df-ur 13772  df-srg 13776  df-ring 13810  df-oppr 13880  df-dvdsr 13901  df-unit 13902  df-rhm 13964
This theorem is referenced by:  rhmunitinv  13990
  Copyright terms: Public domain W3C validator