Proof of Theorem elrhmunit
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
| 2 | | eqidd 2197 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) |
| 3 | | eqidd 2197 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑅) = (Unit‘𝑅)) |
| 4 | | rhmrcl1 13787 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
| 5 | 4 | adantr 276 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring) |
| 6 | | ringsrg 13679 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
| 7 | 5, 6 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑅 ∈ SRing) |
| 8 | | simpr 110 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅)) |
| 9 | 2, 3, 7, 8 | unitcld 13740 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅)) |
| 10 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 11 | | eqid 2196 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 12 | 10, 11 | ringidcl 13652 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
| 13 | 1, 4, 12 | 3syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 14 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) = (1r‘𝑅)) |
| 15 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r‘𝑅) =
(∥r‘𝑅)) |
| 16 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(oppr‘𝑅) = (oppr‘𝑅)) |
| 17 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅))) |
| 18 | 3, 14, 15, 16, 17, 7 | isunitd 13738 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴 ∈ (Unit‘𝑅) ↔ (𝐴(∥r‘𝑅)(1r‘𝑅) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)))) |
| 19 | 8, 18 | mpbid 147 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴(∥r‘𝑅)(1r‘𝑅) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅))) |
| 20 | 19 | simpld 112 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘𝑅)(1r‘𝑅)) |
| 21 | | eqid 2196 |
. . . . 5
⊢
(∥r‘𝑅) = (∥r‘𝑅) |
| 22 | | eqid 2196 |
. . . . 5
⊢
(∥r‘𝑆) = (∥r‘𝑆) |
| 23 | 10, 21, 22 | rhmdvdsr 13807 |
. . . 4
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r‘𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r‘𝑅)(1r‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅))) |
| 24 | 1, 9, 13, 20, 23 | syl31anc 1252 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅))) |
| 25 | | eqid 2196 |
. . . . . 6
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 26 | 11, 25 | rhm1 13799 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 27 | 26 | breq2d 4046 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆))) |
| 28 | 27 | adantr 276 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴)(∥r‘𝑆)(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆))) |
| 29 | 24, 28 | mpbid 147 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆)) |
| 30 | | rhmopp 13808 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) |
| 31 | 30 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) |
| 32 | | eqid 2196 |
. . . . . . 7
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 33 | 32, 10 | opprbasg 13707 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
| 34 | 5, 33 | syl 14 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Base‘𝑅) =
(Base‘(oppr‘𝑅))) |
| 35 | 9, 34 | eleqtrd 2275 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈
(Base‘(oppr‘𝑅))) |
| 36 | 13, 34 | eleqtrd 2275 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑅) ∈
(Base‘(oppr‘𝑅))) |
| 37 | 19 | simprd 114 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)) |
| 38 | | eqid 2196 |
. . . . 5
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) |
| 39 | | eqid 2196 |
. . . . 5
⊢
(∥r‘(oppr‘𝑅)) =
(∥r‘(oppr‘𝑅)) |
| 40 | | eqid 2196 |
. . . . 5
⊢
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆)) |
| 41 | 38, 39, 40 | rhmdvdsr 13807 |
. . . 4
⊢ (((𝐹 ∈
((oppr‘𝑅) RingHom
(oppr‘𝑆)) ∧ 𝐴 ∈
(Base‘(oppr‘𝑅)) ∧ (1r‘𝑅) ∈
(Base‘(oppr‘𝑅))) ∧ 𝐴(∥r‘(oppr‘𝑅))(1r‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅))) |
| 42 | 31, 35, 36, 37, 41 | syl31anc 1252 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅))) |
| 43 | 26 | breq2d 4046 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) |
| 44 | 43 | adantr 276 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴)(∥r‘(oppr‘𝑆))(𝐹‘(1r‘𝑅)) ↔ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆))) |
| 45 | 42, 44 | mpbid 147 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆)) |
| 46 | | eqidd 2197 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (Unit‘𝑆) = (Unit‘𝑆)) |
| 47 | | eqidd 2197 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r‘𝑆) = (1r‘𝑆)) |
| 48 | | eqidd 2197 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (∥r‘𝑆) =
(∥r‘𝑆)) |
| 49 | | eqidd 2197 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(oppr‘𝑆) = (oppr‘𝑆)) |
| 50 | | eqidd 2197 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) →
(∥r‘(oppr‘𝑆)) =
(∥r‘(oppr‘𝑆))) |
| 51 | | rhmrcl2 13788 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
| 52 | 51 | adantr 276 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ Ring) |
| 53 | | ringsrg 13679 |
. . . 4
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
| 54 | 52, 53 | syl 14 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝑆 ∈ SRing) |
| 55 | 46, 47, 48, 49, 50, 54 | isunitd 13738 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹‘𝐴) ∈ (Unit‘𝑆) ↔ ((𝐹‘𝐴)(∥r‘𝑆)(1r‘𝑆) ∧ (𝐹‘𝐴)(∥r‘(oppr‘𝑆))(1r‘𝑆)))) |
| 56 | 29, 45, 55 | mpbir2and 946 |
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) |