![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluzfz1 | GIF version |
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
eluzfz1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 9600 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | uzid 9609 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (ℤ≥‘𝑀)) |
4 | eluzfz 10089 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (𝑀...𝑁)) | |
5 | 3, 4 | mpancom 422 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 ℤcz 9320 ℤ≥cuz 9595 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-pre-ltirr 7986 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-neg 8195 df-z 9321 df-uz 9596 df-fz 10078 |
This theorem is referenced by: elfz3 10103 fzm 10107 fzopth 10130 fz01or 10180 exfzdc 10310 seq3clss 10545 seqfveqg 10552 seq3fveq 10553 seq3shft2 10555 seqshft2g 10556 monoord 10559 monoord2 10560 seqcaopr3g 10566 iseqf1olemqk 10581 seq3f1olemqsumkj 10585 seq3f1olemp 10589 seqf1oglem2a 10592 seqf1oglem2 10594 seq3id3 10598 seqhomog 10604 ser3ge0 10610 seq3coll 10916 fsum1p 11564 telfsumo 11612 telfsumo2 11613 fsumparts 11616 mertenslem2 11682 prodfap0 11691 prodfrecap 11692 fprod1p 11745 phicl2 12355 4sqlem19 12550 gsum0g 12982 gsumsplit1r 12984 gsumfzz 13070 gsumfzfsumlemm 14086 inffz 15632 |
Copyright terms: Public domain | W3C validator |