ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzfz1 GIF version

Theorem eluzfz1 10061
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz1 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz1
StepHypRef Expression
1 eluzel2 9563 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 uzid 9572 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
4 eluzfz 10050 . 2 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (𝑀...𝑁))
53, 4mpancom 422 1 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  cfv 5235  (class class class)co 5896  cz 9283  cuz 9558  ...cfz 10038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-pre-ltirr 7953
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-neg 8161  df-z 9284  df-uz 9559  df-fz 10039
This theorem is referenced by:  elfz3  10064  fzm  10068  fzopth  10091  fz01or  10141  exfzdc  10270  seq3clss  10498  seq3fveq  10502  seq3shft2  10504  monoord  10507  monoord2  10508  iseqf1olemqk  10525  seq3f1olemqsumkj  10529  seq3f1olemp  10533  seq3id3  10538  ser3ge0  10548  seq3coll  10854  fsum1p  11458  telfsumo  11506  telfsumo2  11507  fsumparts  11510  mertenslem2  11576  prodfap0  11585  prodfrecap  11586  fprod1p  11639  phicl2  12246  4sqlem19  12441  inffz  15282
  Copyright terms: Public domain W3C validator