| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzfz1 | GIF version | ||
| Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| eluzfz1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9727 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | uzid 9736 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | eluzfz 10216 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (𝑀...𝑁)) | |
| 5 | 3, 4 | mpancom 422 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 ℤcz 9446 ℤ≥cuz 9722 ...cfz 10204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-neg 8320 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: elfz3 10230 fzm 10234 fzopth 10257 fz01or 10307 exfzdc 10446 seq3clss 10693 seqfveqg 10700 seq3fveq 10701 seq3shft2 10703 seqshft2g 10704 monoord 10707 monoord2 10708 seqcaopr3g 10714 iseqf1olemqk 10729 seq3f1olemqsumkj 10733 seq3f1olemp 10737 seqf1oglem2a 10740 seqf1oglem2 10742 seq3id3 10746 seqhomog 10752 ser3ge0 10758 seq3coll 11064 pfxwrdsymbg 11222 fsum1p 11929 telfsumo 11977 telfsumo2 11978 fsumparts 11981 mertenslem2 12047 prodfap0 12056 prodfrecap 12057 fprod1p 12110 phicl2 12736 4sqlem19 12932 gsum0g 13429 gsumsplit1r 13431 gsumfzz 13528 gsumfzfsumlemm 14551 inffz 16440 |
| Copyright terms: Public domain | W3C validator |