ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzfz1 GIF version

Theorem eluzfz1 9652
Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
eluzfz1 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))

Proof of Theorem eluzfz1
StepHypRef Expression
1 eluzel2 9181 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 uzid 9190 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
31, 2syl 14 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ𝑀))
4 eluzfz 9642 . 2 ((𝑀 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑀 ∈ (𝑀...𝑁))
53, 4mpancom 416 1 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1448  cfv 5059  (class class class)co 5706  cz 8906  cuz 9176  ...cfz 9631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-pre-ltirr 7607
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-neg 7807  df-z 8907  df-uz 9177  df-fz 9632
This theorem is referenced by:  elfz3  9655  fzm  9659  fzopth  9682  fz01or  9732  exfzdc  9858  seq3clss  10081  seq3fveq  10085  seq3shft2  10087  monoord  10090  monoord2  10091  iseqf1olemqk  10108  seq3f1olemqsumkj  10112  seq3f1olemp  10116  seq3id3  10121  ser3ge0  10131  seq3coll  10426  fsum1p  11026  telfsumo  11074  telfsumo2  11075  fsumparts  11078  mertenslem2  11144  phicl2  11682  inffz  12822
  Copyright terms: Public domain W3C validator