| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzfz1 | GIF version | ||
| Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| eluzfz1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9655 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | uzid 9664 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 4 | eluzfz 10144 | . 2 ⊢ ((𝑀 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑀 ∈ (𝑀...𝑁)) | |
| 5 | 3, 4 | mpancom 422 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ‘cfv 5272 (class class class)co 5946 ℤcz 9374 ℤ≥cuz 9650 ...cfz 10132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-pre-ltirr 8039 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-neg 8248 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: elfz3 10158 fzm 10162 fzopth 10185 fz01or 10235 exfzdc 10371 seq3clss 10618 seqfveqg 10625 seq3fveq 10626 seq3shft2 10628 seqshft2g 10629 monoord 10632 monoord2 10633 seqcaopr3g 10639 iseqf1olemqk 10654 seq3f1olemqsumkj 10658 seq3f1olemp 10662 seqf1oglem2a 10665 seqf1oglem2 10667 seq3id3 10671 seqhomog 10677 ser3ge0 10683 seq3coll 10989 pfxwrdsymbg 11144 fsum1p 11762 telfsumo 11810 telfsumo2 11811 fsumparts 11814 mertenslem2 11880 prodfap0 11889 prodfrecap 11890 fprod1p 11943 phicl2 12569 4sqlem19 12765 gsum0g 13261 gsumsplit1r 13263 gsumfzz 13360 gsumfzfsumlemm 14382 inffz 16048 |
| Copyright terms: Public domain | W3C validator |