ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pfxccat1 Unicode version

Theorem pfxccat1 11193
Description: Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxccat1  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) prefix  ( `  S )
)  =  S )

Proof of Theorem pfxccat1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 ccatcl 11087 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  B )
2 lencl 11035 . . . . . 6  |-  ( S  e. Word  B  ->  ( `  S )  e.  NN0 )
3 lencl 11035 . . . . . 6  |-  ( T  e. Word  B  ->  ( `  T )  e.  NN0 )
42, 3anim12i 338 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  e.  NN0  /\  ( `  T )  e. 
NN0 ) )
5 nn0fz0 10276 . . . . . . 7  |-  ( ( `  S )  e.  NN0  <->  ( `  S )  e.  ( 0 ... ( `  S
) ) )
62, 5sylib 122 . . . . . 6  |-  ( S  e. Word  B  ->  ( `  S )  e.  ( 0 ... ( `  S
) ) )
76adantr 276 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( 0 ... ( `  S ) ) )
8 elfz0add 10277 . . . . 5  |-  ( ( ( `  S )  e.  NN0  /\  ( `  T
)  e.  NN0 )  ->  ( ( `  S
)  e.  ( 0 ... ( `  S
) )  ->  ( `  S )  e.  ( 0 ... ( ( `  S )  +  ( `  T ) ) ) ) )
94, 7, 8sylc 62 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( 0 ... (
( `  S )  +  ( `  T )
) ) )
10 ccatlen 11089 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  ( S ++  T ) )  =  ( ( `  S
)  +  ( `  T
) ) )
1110oveq2d 5983 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0 ... ( `  ( S ++  T ) ) )  =  ( 0 ... ( ( `  S )  +  ( `  T ) ) ) )
129, 11eleqtrrd 2287 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( 0 ... ( `  ( S ++  T ) ) ) )
13 pfxres 11172 . . 3  |-  ( ( ( S ++  T )  e. Word  B  /\  ( `  S )  e.  ( 0 ... ( `  ( S ++  T ) ) ) )  ->  ( ( S ++  T ) prefix  ( `  S
) )  =  ( ( S ++  T )  |`  ( 0..^ ( `  S
) ) ) )
141, 12, 13syl2anc 411 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) prefix  ( `  S )
)  =  ( ( S ++  T )  |`  ( 0..^ ( `  S
) ) ) )
15 ccatvalfn 11095 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) ) )
162nn0zd 9528 . . . . . . 7  |-  ( S  e. Word  B  ->  ( `  S )  e.  ZZ )
1716uzidd 9698 . . . . . 6  |-  ( S  e. Word  B  ->  ( `  S )  e.  (
ZZ>= `  ( `  S
) ) )
18 uzaddcl 9742 . . . . . 6  |-  ( ( ( `  S )  e.  ( ZZ>= `  ( `  S
) )  /\  ( `  T )  e.  NN0 )  ->  ( ( `  S
)  +  ( `  T
) )  e.  (
ZZ>= `  ( `  S
) ) )
1917, 3, 18syl2an 289 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  (
ZZ>= `  ( `  S
) ) )
20 fzoss2 10331 . . . . 5  |-  ( ( ( `  S )  +  ( `  T )
)  e.  ( ZZ>= `  ( `  S ) )  ->  ( 0..^ ( `  S ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2119, 20syl 14 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( `  S
) )  C_  (
0..^ ( ( `  S
)  +  ( `  T
) ) ) )
2215, 21fnssresd 5409 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
)  |`  ( 0..^ ( `  S ) ) )  Fn  ( 0..^ ( `  S ) ) )
23 wrdfn 11046 . . . 4  |-  ( S  e. Word  B  ->  S  Fn  ( 0..^ ( `  S
) ) )
2423adantr 276 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S  Fn  ( 0..^ ( `  S )
) )
25 fvres 5623 . . . . 5  |-  ( k  e.  ( 0..^ ( `  S ) )  -> 
( ( ( S ++  T )  |`  (
0..^ ( `  S )
) ) `  k
)  =  ( ( S ++  T ) `  k ) )
2625adantl 277 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( `  S
) ) )  -> 
( ( ( S ++  T )  |`  (
0..^ ( `  S )
) ) `  k
)  =  ( ( S ++  T ) `  k ) )
27 ccatval1 11091 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  k  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  k )  =  ( S `  k ) )
28273expa 1206 . . . 4  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  k )  =  ( S `  k ) )
2926, 28eqtrd 2240 . . 3  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  k  e.  ( 0..^ ( `  S
) ) )  -> 
( ( ( S ++  T )  |`  (
0..^ ( `  S )
) ) `  k
)  =  ( S `
 k ) )
3022, 24, 29eqfnfvd 5703 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
)  |`  ( 0..^ ( `  S ) ) )  =  S )
3114, 30eqtrd 2240 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( S ++  T
) prefix  ( `  S )
)  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174    |` cres 4695    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   0cc0 7960    + caddc 7963   NN0cn0 9330   ZZ>=cuz 9683   ...cfz 10165  ..^cfzo 10299  ♯chash 10957  Word cword 11031   ++ cconcat 11084   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137  df-pfx 11164
This theorem is referenced by:  ccatopth  11207  reuccatpfxs1  11238
  Copyright terms: Public domain W3C validator