ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatrn Unicode version

Theorem ccatrn 11088
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatrn  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  ( S ++  T
)  =  ( ran 
S  u.  ran  T
) )

Proof of Theorem ccatrn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatvalfn 11080 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) ) )
2 lencl 11020 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  ( `  S )  e.  NN0 )
3 nn0uz 9703 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2299 . . . . . . . . . . 11  |-  ( S  e. Word  B  ->  ( `  S )  e.  (
ZZ>= `  0 ) )
54adantr 276 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( ZZ>= `  0 )
)
62nn0zd 9513 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  ( `  S )  e.  ZZ )
76uzidd 9683 . . . . . . . . . . 11  |-  ( S  e. Word  B  ->  ( `  S )  e.  (
ZZ>= `  ( `  S
) ) )
8 lencl 11020 . . . . . . . . . . 11  |-  ( T  e. Word  B  ->  ( `  T )  e.  NN0 )
9 uzaddcl 9727 . . . . . . . . . . 11  |-  ( ( ( `  S )  e.  ( ZZ>= `  ( `  S
) )  /\  ( `  T )  e.  NN0 )  ->  ( ( `  S
)  +  ( `  T
) )  e.  (
ZZ>= `  ( `  S
) ) )
107, 8, 9syl2an 289 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  (
ZZ>= `  ( `  S
) ) )
11 elfzuzb 10161 . . . . . . . . . 10  |-  ( ( `  S )  e.  ( 0 ... ( ( `  S )  +  ( `  T ) ) )  <-> 
( ( `  S
)  e.  ( ZZ>= ` 
0 )  /\  (
( `  S )  +  ( `  T )
)  e.  ( ZZ>= `  ( `  S ) ) ) )
125, 10, 11sylanbrc 417 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( 0 ... (
( `  S )  +  ( `  T )
) ) )
13 fzosplit 10321 . . . . . . . . 9  |-  ( ( `  S )  e.  ( 0 ... ( ( `  S )  +  ( `  T ) ) )  ->  ( 0..^ ( ( `  S )  +  ( `  T )
) )  =  ( ( 0..^ ( `  S
) )  u.  (
( `  S )..^ ( ( `  S )  +  ( `  T )
) ) ) )
1412, 13syl 14 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( ( `  S )  +  ( `  T ) ) )  =  ( ( 0..^ ( `  S )
)  u.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) ) )
1514eleq2d 2276 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  <->  x  e.  ( ( 0..^ ( `  S ) )  u.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) ) )
16 elun 3318 . . . . . . 7  |-  ( x  e.  ( ( 0..^ ( `  S )
)  u.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) )  <->  ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) )
1715, 16bitrdi 196 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  <->  ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) ) )
18 ccatval1 11076 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  =  ( S `  x ) )
19183expa 1206 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  =  ( S `  x ) )
20 ssun1 3340 . . . . . . . . . 10  |-  ran  S  C_  ( ran  S  u.  ran  T )
21 wrdfn 11031 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  S  Fn  ( 0..^ ( `  S
) ) )
2221adantr 276 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S  Fn  ( 0..^ ( `  S )
) )
23 fnfvelrn 5725 . . . . . . . . . . 11  |-  ( ( S  Fn  ( 0..^ ( `  S )
)  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ran  S
)
2422, 23sylan 283 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ran  S
)
2520, 24sselid 3195 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ( ran 
S  u.  ran  T
) )
2619, 25eqeltrd 2283 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  e.  ( ran  S  u.  ran  T ) )
27 ccatval2 11077 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  x
)  =  ( T `
 ( x  -  ( `  S ) ) ) )
28273expa 1206 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( ( S ++  T
) `  x )  =  ( T `  ( x  -  ( `  S ) ) ) )
29 ssun2 3341 . . . . . . . . . 10  |-  ran  T  C_  ( ran  S  u.  ran  T )
30 wrdfn 11031 . . . . . . . . . . . 12  |-  ( T  e. Word  B  ->  T  Fn  ( 0..^ ( `  T
) ) )
3130adantl 277 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T  Fn  ( 0..^ ( `  T )
) )
32 elfzouz 10293 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  e.  ( ZZ>= `  ( `  S ) ) )
33 uznn0sub 9700 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ZZ>= `  ( `  S ) )  -> 
( x  -  ( `  S ) )  e. 
NN0 )
3432, 33syl 14 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  -> 
( x  -  ( `  S ) )  e. 
NN0 )
3534, 3eleqtrdi 2299 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  -> 
( x  -  ( `  S ) )  e.  ( ZZ>= `  0 )
)
3635adantl 277 . . . . . . . . . . . 12  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( x  -  ( `  S ) )  e.  ( ZZ>= `  0 )
)
378nn0zd 9513 . . . . . . . . . . . . 13  |-  ( T  e. Word  B  ->  ( `  T )  e.  ZZ )
3837ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( `  T )  e.  ZZ )
39 elfzolt2 10299 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  <  ( ( `  S
)  +  ( `  T
) ) )
4039adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  ->  x  <  ( ( `  S
)  +  ( `  T
) ) )
41 elfzoelz 10289 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  e.  ZZ )
4241zred 9515 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  e.  RR )
4342adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  ->  x  e.  RR )
442nn0red 9369 . . . . . . . . . . . . . . 15  |-  ( S  e. Word  B  ->  ( `  S )  e.  RR )
4544ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( `  S )  e.  RR )
468nn0red 9369 . . . . . . . . . . . . . . 15  |-  ( T  e. Word  B  ->  ( `  T )  e.  RR )
4746ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( `  T )  e.  RR )
4843, 45, 47ltsubadd2d 8636 . . . . . . . . . . . . 13  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( ( x  -  ( `  S ) )  <  ( `  T )  <->  x  <  ( ( `  S
)  +  ( `  T
) ) ) )
4940, 48mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( x  -  ( `  S ) )  < 
( `  T ) )
50 elfzo2 10292 . . . . . . . . . . . 12  |-  ( ( x  -  ( `  S
) )  e.  ( 0..^ ( `  T
) )  <->  ( (
x  -  ( `  S
) )  e.  (
ZZ>= `  0 )  /\  ( `  T )  e.  ZZ  /\  ( x  -  ( `  S
) )  <  ( `  T ) ) )
5136, 38, 49, 50syl3anbrc 1184 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( x  -  ( `  S ) )  e.  ( 0..^ ( `  T
) ) )
52 fnfvelrn 5725 . . . . . . . . . . 11  |-  ( ( T  Fn  ( 0..^ ( `  T )
)  /\  ( x  -  ( `  S )
)  e.  ( 0..^ ( `  T )
) )  ->  ( T `  ( x  -  ( `  S )
) )  e.  ran  T )
5331, 51, 52syl2an2r 595 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( T `  (
x  -  ( `  S
) ) )  e. 
ran  T )
5429, 53sselid 3195 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( T `  (
x  -  ( `  S
) ) )  e.  ( ran  S  u.  ran  T ) )
5528, 54eqeltrd 2283 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( ( S ++  T
) `  x )  e.  ( ran  S  u.  ran  T ) )
5626, 55jaodan 799 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) )  ->  ( ( S ++  T ) `  x
)  e.  ( ran 
S  u.  ran  T
) )
5756ex 115 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  x
)  e.  ( ran 
S  u.  ran  T
) ) )
5817, 57sylbid 150 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  -> 
( ( S ++  T
) `  x )  e.  ( ran  S  u.  ran  T ) ) )
5958ralrimiv 2579 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) ( ( S ++  T ) `
 x )  e.  ( ran  S  u.  ran  T ) )
60 ffnfv 5751 . . . 4  |-  ( ( S ++  T ) : ( 0..^ ( ( `  S )  +  ( `  T ) ) ) --> ( ran  S  u.  ran  T )  <->  ( ( S ++  T )  Fn  (
0..^ ( ( `  S
)  +  ( `  T
) ) )  /\  A. x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) ( ( S ++  T ) `
 x )  e.  ( ran  S  u.  ran  T ) ) )
611, 59, 60sylanbrc 417 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T ) : ( 0..^ ( ( `  S )  +  ( `  T )
) ) --> ( ran 
S  u.  ran  T
) )
6261frnd 5445 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  ( S ++  T
)  C_  ( ran  S  u.  ran  T ) )
63 fzoss2 10316 . . . . . . . . . 10  |-  ( ( ( `  S )  +  ( `  T )
)  e.  ( ZZ>= `  ( `  S ) )  ->  ( 0..^ ( `  S ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
6410, 63syl 14 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( `  S
) )  C_  (
0..^ ( ( `  S
)  +  ( `  T
) ) ) )
6564sselda 3197 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  ->  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
66 fnfvelrn 5725 . . . . . . . 8  |-  ( ( ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) )  /\  x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) )  ->  ( ( S ++  T ) `  x
)  e.  ran  ( S ++  T ) )
671, 65, 66syl2an2r 595 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  e.  ran  ( S ++  T
) )
6819, 67eqeltrrd 2284 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ran  ( S ++  T ) )
6968ralrimiva 2580 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( `  S
) ) ( S `
 x )  e. 
ran  ( S ++  T
) )
70 ffnfv 5751 . . . . 5  |-  ( S : ( 0..^ ( `  S ) ) --> ran  ( S ++  T )  <-> 
( S  Fn  (
0..^ ( `  S )
)  /\  A. x  e.  ( 0..^ ( `  S
) ) ( S `
 x )  e. 
ran  ( S ++  T
) ) )
7122, 69, 70sylanbrc 417 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S : ( 0..^ ( `  S )
) --> ran  ( S ++  T ) )
7271frnd 5445 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  S  C_  ran  ( S ++  T )
)
73 ccatval3 11078 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( S ++  T
) `  ( x  +  ( `  S )
) )  =  ( T `  x ) )
74733expa 1206 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( S ++  T
) `  ( x  +  ( `  S )
) )  =  ( T `  x ) )
75 elfzouz 10293 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  ( ZZ>= ` 
0 ) )
762adantr 276 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  NN0 )
77 uzaddcl 9727 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
0 )  /\  ( `  S )  e.  NN0 )  ->  ( x  +  ( `  S ) )  e.  ( ZZ>= `  0
) )
7875, 76, 77syl2anr 290 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  e.  ( ZZ>= `  0 )
)
79 nn0addcl 9350 . . . . . . . . . . . 12  |-  ( ( ( `  S )  e.  NN0  /\  ( `  T
)  e.  NN0 )  ->  ( ( `  S
)  +  ( `  T
) )  e.  NN0 )
802, 8, 79syl2an 289 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  NN0 )
8180nn0zd 9513 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  ZZ )
8281adantr 276 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( `  S
)  +  ( `  T
) )  e.  ZZ )
83 elfzonn0 10332 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  NN0 )
8483nn0cnd 9370 . . . . . . . . . . 11  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  CC )
852nn0cnd 9370 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  ( `  S )  e.  CC )
8685adantr 276 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  CC )
87 addcom 8229 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( `  S )  e.  CC )  ->  (
x  +  ( `  S
) )  =  ( ( `  S )  +  x ) )
8884, 86, 87syl2anr 290 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  =  ( ( `  S
)  +  x ) )
8983nn0red 9369 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  RR )
9089adantl 277 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  ->  x  e.  RR )
9146ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( `  T )  e.  RR )
9244ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( `  S )  e.  RR )
93 elfzolt2 10299 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  <  ( `  T )
)
9493adantl 277 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  ->  x  <  ( `  T )
)
9590, 91, 92, 94ltadd2dd 8515 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( `  S
)  +  x )  <  ( ( `  S
)  +  ( `  T
) ) )
9688, 95eqbrtrd 4073 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  < 
( ( `  S
)  +  ( `  T
) ) )
97 elfzo2 10292 . . . . . . . . 9  |-  ( ( x  +  ( `  S
) )  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  <->  ( (
x  +  ( `  S
) )  e.  (
ZZ>= `  0 )  /\  ( ( `  S )  +  ( `  T )
)  e.  ZZ  /\  ( x  +  ( `  S ) )  < 
( ( `  S
)  +  ( `  T
) ) ) )
9878, 82, 96, 97syl3anbrc 1184 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) )
99 fnfvelrn 5725 . . . . . . . 8  |-  ( ( ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) )  /\  (
x  +  ( `  S
) )  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  (
x  +  ( `  S
) ) )  e. 
ran  ( S ++  T
) )
1001, 98, 99syl2an2r 595 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( S ++  T
) `  ( x  +  ( `  S )
) )  e.  ran  ( S ++  T )
)
10174, 100eqeltrrd 2284 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( T `  x
)  e.  ran  ( S ++  T ) )
102101ralrimiva 2580 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( `  T
) ) ( T `
 x )  e. 
ran  ( S ++  T
) )
103 ffnfv 5751 . . . . 5  |-  ( T : ( 0..^ ( `  T ) ) --> ran  ( S ++  T )  <-> 
( T  Fn  (
0..^ ( `  T )
)  /\  A. x  e.  ( 0..^ ( `  T
) ) ( T `
 x )  e. 
ran  ( S ++  T
) ) )
10431, 102, 103sylanbrc 417 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T : ( 0..^ ( `  T )
) --> ran  ( S ++  T ) )
105104frnd 5445 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  T  C_  ran  ( S ++  T )
)
10672, 105unssd 3353 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ran  S  u.  ran  T )  C_  ran  ( S ++  T )
)
10762, 106eqssd 3214 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  ( S ++  T
)  =  ( ran 
S  u.  ran  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2177   A.wral 2485    u. cun 3168    C_ wss 3170   class class class wbr 4051   ran crn 4684    Fn wfn 5275   -->wf 5276   ` cfv 5280  (class class class)co 5957   CCcc 7943   RRcr 7944   0cc0 7945    + caddc 7948    < clt 8127    - cmin 8263   NN0cn0 9315   ZZcz 9392   ZZ>=cuz 9668   ...cfz 10150  ..^cfzo 10284  ♯chash 10942  Word cword 11016   ++ cconcat 11069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-ihash 10943  df-word 11017  df-concat 11070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator