ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ccatrn Unicode version

Theorem ccatrn 11040
Description: The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatrn  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  ( S ++  T
)  =  ( ran 
S  u.  ran  T
) )

Proof of Theorem ccatrn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatvalfn 11032 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) ) )
2 lencl 10973 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  ( `  S )  e.  NN0 )
3 nn0uz 9665 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2297 . . . . . . . . . . 11  |-  ( S  e. Word  B  ->  ( `  S )  e.  (
ZZ>= `  0 ) )
54adantr 276 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( ZZ>= `  0 )
)
62nn0zd 9475 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  ( `  S )  e.  ZZ )
76uzidd 9645 . . . . . . . . . . 11  |-  ( S  e. Word  B  ->  ( `  S )  e.  (
ZZ>= `  ( `  S
) ) )
8 lencl 10973 . . . . . . . . . . 11  |-  ( T  e. Word  B  ->  ( `  T )  e.  NN0 )
9 uzaddcl 9689 . . . . . . . . . . 11  |-  ( ( ( `  S )  e.  ( ZZ>= `  ( `  S
) )  /\  ( `  T )  e.  NN0 )  ->  ( ( `  S
)  +  ( `  T
) )  e.  (
ZZ>= `  ( `  S
) ) )
107, 8, 9syl2an 289 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  (
ZZ>= `  ( `  S
) ) )
11 elfzuzb 10123 . . . . . . . . . 10  |-  ( ( `  S )  e.  ( 0 ... ( ( `  S )  +  ( `  T ) ) )  <-> 
( ( `  S
)  e.  ( ZZ>= ` 
0 )  /\  (
( `  S )  +  ( `  T )
)  e.  ( ZZ>= `  ( `  S ) ) ) )
125, 10, 11sylanbrc 417 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  ( 0 ... (
( `  S )  +  ( `  T )
) ) )
13 fzosplit 10282 . . . . . . . . 9  |-  ( ( `  S )  e.  ( 0 ... ( ( `  S )  +  ( `  T ) ) )  ->  ( 0..^ ( ( `  S )  +  ( `  T )
) )  =  ( ( 0..^ ( `  S
) )  u.  (
( `  S )..^ ( ( `  S )  +  ( `  T )
) ) ) )
1412, 13syl 14 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( ( `  S )  +  ( `  T ) ) )  =  ( ( 0..^ ( `  S )
)  u.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) ) )
1514eleq2d 2274 . . . . . . 7  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  <->  x  e.  ( ( 0..^ ( `  S ) )  u.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) ) )
16 elun 3313 . . . . . . 7  |-  ( x  e.  ( ( 0..^ ( `  S )
)  u.  ( ( `  S )..^ ( ( `  S )  +  ( `  T ) ) ) )  <->  ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) )
1715, 16bitrdi 196 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  <->  ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) ) )
18 ccatval1 11028 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  =  ( S `  x ) )
19183expa 1205 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  =  ( S `  x ) )
20 ssun1 3335 . . . . . . . . . 10  |-  ran  S  C_  ( ran  S  u.  ran  T )
21 wrdfn 10984 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  S  Fn  ( 0..^ ( `  S
) ) )
2221adantr 276 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S  Fn  ( 0..^ ( `  S )
) )
23 fnfvelrn 5706 . . . . . . . . . . 11  |-  ( ( S  Fn  ( 0..^ ( `  S )
)  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ran  S
)
2422, 23sylan 283 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ran  S
)
2520, 24sselid 3190 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ( ran 
S  u.  ran  T
) )
2619, 25eqeltrd 2281 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  e.  ( ran  S  u.  ran  T ) )
27 ccatval2 11029 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  x
)  =  ( T `
 ( x  -  ( `  S ) ) ) )
28273expa 1205 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( ( S ++  T
) `  x )  =  ( T `  ( x  -  ( `  S ) ) ) )
29 ssun2 3336 . . . . . . . . . 10  |-  ran  T  C_  ( ran  S  u.  ran  T )
30 wrdfn 10984 . . . . . . . . . . . 12  |-  ( T  e. Word  B  ->  T  Fn  ( 0..^ ( `  T
) ) )
3130adantl 277 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T  Fn  ( 0..^ ( `  T )
) )
32 elfzouz 10255 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  e.  ( ZZ>= `  ( `  S ) ) )
33 uznn0sub 9662 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ZZ>= `  ( `  S ) )  -> 
( x  -  ( `  S ) )  e. 
NN0 )
3432, 33syl 14 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  -> 
( x  -  ( `  S ) )  e. 
NN0 )
3534, 3eleqtrdi 2297 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  -> 
( x  -  ( `  S ) )  e.  ( ZZ>= `  0 )
)
3635adantl 277 . . . . . . . . . . . 12  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( x  -  ( `  S ) )  e.  ( ZZ>= `  0 )
)
378nn0zd 9475 . . . . . . . . . . . . 13  |-  ( T  e. Word  B  ->  ( `  T )  e.  ZZ )
3837ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( `  T )  e.  ZZ )
39 elfzolt2 10261 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  <  ( ( `  S
)  +  ( `  T
) ) )
4039adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  ->  x  <  ( ( `  S
)  +  ( `  T
) ) )
41 elfzoelz 10251 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  e.  ZZ )
4241zred 9477 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) )  ->  x  e.  RR )
4342adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  ->  x  e.  RR )
442nn0red 9331 . . . . . . . . . . . . . . 15  |-  ( S  e. Word  B  ->  ( `  S )  e.  RR )
4544ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( `  S )  e.  RR )
468nn0red 9331 . . . . . . . . . . . . . . 15  |-  ( T  e. Word  B  ->  ( `  T )  e.  RR )
4746ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( `  T )  e.  RR )
4843, 45, 47ltsubadd2d 8598 . . . . . . . . . . . . 13  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( ( x  -  ( `  S ) )  <  ( `  T )  <->  x  <  ( ( `  S
)  +  ( `  T
) ) ) )
4940, 48mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( x  -  ( `  S ) )  < 
( `  T ) )
50 elfzo2 10254 . . . . . . . . . . . 12  |-  ( ( x  -  ( `  S
) )  e.  ( 0..^ ( `  T
) )  <->  ( (
x  -  ( `  S
) )  e.  (
ZZ>= `  0 )  /\  ( `  T )  e.  ZZ  /\  ( x  -  ( `  S
) )  <  ( `  T ) ) )
5136, 38, 49, 50syl3anbrc 1183 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( x  -  ( `  S ) )  e.  ( 0..^ ( `  T
) ) )
52 fnfvelrn 5706 . . . . . . . . . . 11  |-  ( ( T  Fn  ( 0..^ ( `  T )
)  /\  ( x  -  ( `  S )
)  e.  ( 0..^ ( `  T )
) )  ->  ( T `  ( x  -  ( `  S )
) )  e.  ran  T )
5331, 51, 52syl2an2r 595 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( T `  (
x  -  ( `  S
) ) )  e. 
ran  T )
5429, 53sselid 3190 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( T `  (
x  -  ( `  S
) ) )  e.  ( ran  S  u.  ran  T ) )
5528, 54eqeltrd 2281 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( ( `  S )..^ ( ( `  S )  +  ( `  T )
) ) )  -> 
( ( S ++  T
) `  x )  e.  ( ran  S  u.  ran  T ) )
5626, 55jaodan 798 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) ) )  ->  ( ( S ++  T ) `  x
)  e.  ( ran 
S  u.  ran  T
) )
5756ex 115 . . . . . 6  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( x  e.  ( 0..^ ( `  S
) )  \/  x  e.  ( ( `  S
)..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  x
)  e.  ( ran 
S  u.  ran  T
) ) )
5817, 57sylbid 150 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  -> 
( ( S ++  T
) `  x )  e.  ( ran  S  u.  ran  T ) ) )
5958ralrimiv 2577 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) ( ( S ++  T ) `
 x )  e.  ( ran  S  u.  ran  T ) )
60 ffnfv 5732 . . . 4  |-  ( ( S ++  T ) : ( 0..^ ( ( `  S )  +  ( `  T ) ) ) --> ( ran  S  u.  ran  T )  <->  ( ( S ++  T )  Fn  (
0..^ ( ( `  S
)  +  ( `  T
) ) )  /\  A. x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) ( ( S ++  T ) `
 x )  e.  ( ran  S  u.  ran  T ) ) )
611, 59, 60sylanbrc 417 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( S ++  T ) : ( 0..^ ( ( `  S )  +  ( `  T )
) ) --> ( ran 
S  u.  ran  T
) )
6261frnd 5429 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  ( S ++  T
)  C_  ( ran  S  u.  ran  T ) )
63 fzoss2 10277 . . . . . . . . . 10  |-  ( ( ( `  S )  +  ( `  T )
)  e.  ( ZZ>= `  ( `  S ) )  ->  ( 0..^ ( `  S ) )  C_  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
6410, 63syl 14 . . . . . . . . 9  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( 0..^ ( `  S
) )  C_  (
0..^ ( ( `  S
)  +  ( `  T
) ) ) )
6564sselda 3192 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  ->  x  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )
66 fnfvelrn 5706 . . . . . . . 8  |-  ( ( ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) )  /\  x  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) )  ->  ( ( S ++  T ) `  x
)  e.  ran  ( S ++  T ) )
671, 65, 66syl2an2r 595 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( ( S ++  T
) `  x )  e.  ran  ( S ++  T
) )
6819, 67eqeltrrd 2282 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  S
) ) )  -> 
( S `  x
)  e.  ran  ( S ++  T ) )
6968ralrimiva 2578 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( `  S
) ) ( S `
 x )  e. 
ran  ( S ++  T
) )
70 ffnfv 5732 . . . . 5  |-  ( S : ( 0..^ ( `  S ) ) --> ran  ( S ++  T )  <-> 
( S  Fn  (
0..^ ( `  S )
)  /\  A. x  e.  ( 0..^ ( `  S
) ) ( S `
 x )  e. 
ran  ( S ++  T
) ) )
7122, 69, 70sylanbrc 417 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  S : ( 0..^ ( `  S )
) --> ran  ( S ++  T ) )
7271frnd 5429 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  S  C_  ran  ( S ++  T )
)
73 ccatval3 11030 . . . . . . . 8  |-  ( ( S  e. Word  B  /\  T  e. Word  B  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( S ++  T
) `  ( x  +  ( `  S )
) )  =  ( T `  x ) )
74733expa 1205 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( S ++  T
) `  ( x  +  ( `  S )
) )  =  ( T `  x ) )
75 elfzouz 10255 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  ( ZZ>= ` 
0 ) )
762adantr 276 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  NN0 )
77 uzaddcl 9689 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
0 )  /\  ( `  S )  e.  NN0 )  ->  ( x  +  ( `  S ) )  e.  ( ZZ>= `  0
) )
7875, 76, 77syl2anr 290 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  e.  ( ZZ>= `  0 )
)
79 nn0addcl 9312 . . . . . . . . . . . 12  |-  ( ( ( `  S )  e.  NN0  /\  ( `  T
)  e.  NN0 )  ->  ( ( `  S
)  +  ( `  T
) )  e.  NN0 )
802, 8, 79syl2an 289 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  NN0 )
8180nn0zd 9475 . . . . . . . . . 10  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ( `  S
)  +  ( `  T
) )  e.  ZZ )
8281adantr 276 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( `  S
)  +  ( `  T
) )  e.  ZZ )
83 elfzonn0 10291 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  NN0 )
8483nn0cnd 9332 . . . . . . . . . . 11  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  CC )
852nn0cnd 9332 . . . . . . . . . . . 12  |-  ( S  e. Word  B  ->  ( `  S )  e.  CC )
8685adantr 276 . . . . . . . . . . 11  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( `  S )  e.  CC )
87 addcom 8191 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( `  S )  e.  CC )  ->  (
x  +  ( `  S
) )  =  ( ( `  S )  +  x ) )
8884, 86, 87syl2anr 290 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  =  ( ( `  S
)  +  x ) )
8983nn0red 9331 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  e.  RR )
9089adantl 277 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  ->  x  e.  RR )
9146ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( `  T )  e.  RR )
9244ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( `  S )  e.  RR )
93 elfzolt2 10261 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ ( `  T ) )  ->  x  <  ( `  T )
)
9493adantl 277 . . . . . . . . . . 11  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  ->  x  <  ( `  T )
)
9590, 91, 92, 94ltadd2dd 8477 . . . . . . . . . 10  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( `  S
)  +  x )  <  ( ( `  S
)  +  ( `  T
) ) )
9688, 95eqbrtrd 4065 . . . . . . . . 9  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  < 
( ( `  S
)  +  ( `  T
) ) )
97 elfzo2 10254 . . . . . . . . 9  |-  ( ( x  +  ( `  S
) )  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) )  <->  ( (
x  +  ( `  S
) )  e.  (
ZZ>= `  0 )  /\  ( ( `  S )  +  ( `  T )
)  e.  ZZ  /\  ( x  +  ( `  S ) )  < 
( ( `  S
)  +  ( `  T
) ) ) )
9878, 82, 96, 97syl3anbrc 1183 . . . . . . . 8  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( x  +  ( `  S ) )  e.  ( 0..^ ( ( `  S )  +  ( `  T ) ) ) )
99 fnfvelrn 5706 . . . . . . . 8  |-  ( ( ( S ++  T )  Fn  ( 0..^ ( ( `  S )  +  ( `  T )
) )  /\  (
x  +  ( `  S
) )  e.  ( 0..^ ( ( `  S
)  +  ( `  T
) ) ) )  ->  ( ( S ++  T ) `  (
x  +  ( `  S
) ) )  e. 
ran  ( S ++  T
) )
1001, 98, 99syl2an2r 595 . . . . . . 7  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( ( S ++  T
) `  ( x  +  ( `  S )
) )  e.  ran  ( S ++  T )
)
10174, 100eqeltrrd 2282 . . . . . 6  |-  ( ( ( S  e. Word  B  /\  T  e. Word  B )  /\  x  e.  ( 0..^ ( `  T
) ) )  -> 
( T `  x
)  e.  ran  ( S ++  T ) )
102101ralrimiva 2578 . . . . 5  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  A. x  e.  ( 0..^ ( `  T
) ) ( T `
 x )  e. 
ran  ( S ++  T
) )
103 ffnfv 5732 . . . . 5  |-  ( T : ( 0..^ ( `  T ) ) --> ran  ( S ++  T )  <-> 
( T  Fn  (
0..^ ( `  T )
)  /\  A. x  e.  ( 0..^ ( `  T
) ) ( T `
 x )  e. 
ran  ( S ++  T
) ) )
10431, 102, 103sylanbrc 417 . . . 4  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  T : ( 0..^ ( `  T )
) --> ran  ( S ++  T ) )
105104frnd 5429 . . 3  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  T  C_  ran  ( S ++  T )
)
10672, 105unssd 3348 . 2  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ( ran  S  u.  ran  T )  C_  ran  ( S ++  T )
)
10762, 106eqssd 3209 1  |-  ( ( S  e. Word  B  /\  T  e. Word  B )  ->  ran  ( S ++  T
)  =  ( ran 
S  u.  ran  T
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1372    e. wcel 2175   A.wral 2483    u. cun 3163    C_ wss 3165   class class class wbr 4043   ran crn 4674    Fn wfn 5263   -->wf 5264   ` cfv 5268  (class class class)co 5934   CCcc 7905   RRcr 7906   0cc0 7907    + caddc 7910    < clt 8089    - cmin 8225   NN0cn0 9277   ZZcz 9354   ZZ>=cuz 9630   ...cfz 10112  ..^cfzo 10246  ♯chash 10901  Word cword 10969   ++ cconcat 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-1o 6492  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247  df-ihash 10902  df-word 10970  df-concat 11022
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator