ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem1cl Unicode version

Theorem gausslemma2dlem1cl 15586
Description: Lemma for gausslemma2dlem1 15588. Closure of the body of the definition of  R. (Contributed by Jim Kingdon, 10-Aug-2025.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2dlem1cl.a  |-  ( ph  ->  A  e.  ( 1 ... H ) )
Assertion
Ref Expression
gausslemma2dlem1cl  |-  ( ph  ->  if ( ( A  x.  2 )  < 
( P  /  2
) ,  ( A  x.  2 ) ,  ( P  -  ( A  x.  2 ) ) )  e.  ZZ )

Proof of Theorem gausslemma2dlem1cl
StepHypRef Expression
1 gausslemma2dlem1cl.a . . . 4  |-  ( ph  ->  A  e.  ( 1 ... H ) )
21elfzelzd 10161 . . 3  |-  ( ph  ->  A  e.  ZZ )
3 2z 9413 . . . 4  |-  2  e.  ZZ
43a1i 9 . . 3  |-  ( ph  ->  2  e.  ZZ )
52, 4zmulcld 9514 . 2  |-  ( ph  ->  ( A  x.  2 )  e.  ZZ )
6 gausslemma2d.p . . . 4  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
7 eldifi 3297 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
8 prmz 12483 . . . 4  |-  ( P  e.  Prime  ->  P  e.  ZZ )
96, 7, 83syl 17 . . 3  |-  ( ph  ->  P  e.  ZZ )
109, 5zsubcld 9513 . 2  |-  ( ph  ->  ( P  -  ( A  x.  2 ) )  e.  ZZ )
11 zq 9760 . . . 4  |-  ( ( A  x.  2 )  e.  ZZ  ->  ( A  x.  2 )  e.  QQ )
125, 11syl 14 . . 3  |-  ( ph  ->  ( A  x.  2 )  e.  QQ )
13 2nn 9211 . . . . 5  |-  2  e.  NN
1413a1i 9 . . . 4  |-  ( ph  ->  2  e.  NN )
15 znq 9758 . . . 4  |-  ( ( P  e.  ZZ  /\  2  e.  NN )  ->  ( P  /  2
)  e.  QQ )
169, 14, 15syl2anc 411 . . 3  |-  ( ph  ->  ( P  /  2
)  e.  QQ )
17 qdclt 10401 . . 3  |-  ( ( ( A  x.  2 )  e.  QQ  /\  ( P  /  2
)  e.  QQ )  -> DECID 
( A  x.  2 )  <  ( P  /  2 ) )
1812, 16, 17syl2anc 411 . 2  |-  ( ph  -> DECID  ( A  x.  2 )  <  ( P  / 
2 ) )
195, 10, 18ifcldcd 3610 1  |-  ( ph  ->  if ( ( A  x.  2 )  < 
( P  /  2
) ,  ( A  x.  2 ) ,  ( P  -  ( A  x.  2 ) ) )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    = wceq 1373    e. wcel 2177    \ cdif 3165   ifcif 3573   {csn 3635   class class class wbr 4048    |-> cmpt 4110  (class class class)co 5954   1c1 7939    x. cmul 7943    < clt 8120    - cmin 8256    / cdiv 8758   NNcn 9049   2c2 9100   ZZcz 9385   QQcq 9753   ...cfz 10143   Primecprime 12479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-prm 12480
This theorem is referenced by:  gausslemma2dlem1f1o  15587
  Copyright terms: Public domain W3C validator