HomeHome Intuitionistic Logic Explorer
Theorem List (p. 156 of 164)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 15501-15600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsincos6thpi 15501 The sine and cosine of  pi  /  6. (Contributed by Paul Chapman, 25-Jan-2008.) (Revised by Wolf Lammen, 24-Sep-2020.)
 |-  ( ( sin `  ( pi  /  6 ) )  =  ( 1  / 
 2 )  /\  ( cos `  ( pi  / 
 6 ) )  =  ( ( sqr `  3
 )  /  2 )
 )
 
Theoremsincos3rdpi 15502 The sine and cosine of  pi  /  3. (Contributed by Mario Carneiro, 21-May-2016.)
 |-  ( ( sin `  ( pi  /  3 ) )  =  ( ( sqr `  3 )  /  2
 )  /\  ( cos `  ( pi  /  3
 ) )  =  ( 1  /  2 ) )
 
Theorempigt3 15503  pi is greater than 3. (Contributed by Brendan Leahy, 21-Aug-2020.)
 |-  3  <  pi
 
Theorempige3 15504  pi is greater than or equal to 3. (Contributed by Mario Carneiro, 21-May-2016.)
 |-  3  <_  pi
 
Theoremabssinper 15505 The absolute value of sine has period  pi. (Contributed by NM, 17-Aug-2008.)
 |-  ( ( A  e.  CC  /\  K  e.  ZZ )  ->  ( abs `  ( sin `  ( A  +  ( K  x.  pi ) ) ) )  =  ( abs `  ( sin `  A ) ) )
 
Theoremsinkpi 15506 The sine of an integer multiple of 
pi is 0. (Contributed by NM, 11-Aug-2008.)
 |-  ( K  e.  ZZ  ->  ( sin `  ( K  x.  pi ) )  =  0 )
 
Theoremcoskpi 15507 The absolute value of the cosine of an integer multiple of  pi is 1. (Contributed by NM, 19-Aug-2008.)
 |-  ( K  e.  ZZ  ->  ( abs `  ( cos `  ( K  x.  pi ) ) )  =  1 )
 
Theoremcosordlem 15508 Cosine is decreasing over the closed interval from  0 to  pi. (Contributed by Mario Carneiro, 10-May-2014.)
 |-  ( ph  ->  A  e.  ( 0 [,] pi ) )   &    |-  ( ph  ->  B  e.  ( 0 [,]
 pi ) )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  ( cos `  B )  < 
 ( cos `  A )
 )
 
Theoremcosq34lt1 15509 Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
Theoremcos02pilt1 15510 Cosine is less than one between zero and  2  x.  pi. (Contributed by Jim Kingdon, 19-Mar-2024.)
 |-  ( A  e.  (
 0 (,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
 
Theoremcos0pilt1 15511 Cosine is between minus one and one on the open interval between zero and  pi. (Contributed by Jim Kingdon, 7-May-2024.)
 |-  ( A  e.  (
 0 (,) pi )  ->  ( cos `  A )  e.  ( -u 1 (,) 1
 ) )
 
Theoremcos11 15512 Cosine is one-to-one over the closed interval from  0 to  pi. (Contributed by Paul Chapman, 16-Mar-2008.) (Revised by Jim Kingdon, 6-May-2024.)
 |-  ( ( A  e.  ( 0 [,] pi )  /\  B  e.  (
 0 [,] pi ) ) 
 ->  ( A  =  B  <->  ( cos `  A )  =  ( cos `  B ) ) )
 
Theoremioocosf1o 15513 The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Jim Kingdon, 7-May-2024.)
 |-  ( cos  |`  ( 0 (,) pi ) ) : ( 0 (,)
 pi ) -1-1-onto-> ( -u 1 (,) 1
 )
 
Theoremnegpitopissre 15514 The interval  ( -u pi (,] pi ) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( -u pi (,] pi )  C_  RR
 
11.2.3  The natural logarithm on complex numbers
 
Syntaxclog 15515 Extend class notation with the natural logarithm function on complex numbers.
 class  log
 
Syntaxccxp 15516 Extend class notation with the complex power function.
 class  ^c
 
Definitiondf-relog 15517 Define the natural logarithm function. Defining the logarithm on complex numbers is similar to square root - there are ways to define it but they tend to make use of excluded middle. Therefore, we merely define logarithms on positive reals. See http://en.wikipedia.org/wiki/Natural_logarithm and https://en.wikipedia.org/wiki/Complex_logarithm. (Contributed by Jim Kingdon, 14-May-2024.)
 |- 
 log  =  `' ( exp  |`  RR )
 
Definitiondf-rpcxp 15518* Define the power function on complex numbers. Because df-relog 15517 is only defined on positive reals, this definition only allows for a base which is a positive real. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |- 
 ^c  =  ( x  e.  RR+ ,  y  e.  CC  |->  ( exp `  (
 y  x.  ( log `  x ) ) ) )
 
Theoremdfrelog 15519 The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008.)
 |-  ( log  |`  RR+ )  =  `' ( exp  |`  RR )
 
Theoremrelogf1o 15520 The natural logarithm function maps the positive reals one-to-one onto the real numbers. (Contributed by Paul Chapman, 21-Apr-2008.)
 |-  ( log  |`  RR+ ) : RR+
 -1-1-onto-> RR
 
Theoremrelogcl 15521 Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
 
Theoremreeflog 15522 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( A  e.  RR+  ->  ( exp `  ( log `  A ) )  =  A )
 
Theoremrelogef 15523 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( A  e.  RR  ->  ( log `  ( exp `  A ) )  =  A )
 
Theoremrelogeftb 15524 Relationship between the natural logarithm function and the exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR )  ->  ( ( log `  A )  =  B  <->  ( exp `  B )  =  A )
 )
 
Theoremlog1 15525 The natural logarithm of  1. One case of Property 1a of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( log `  1
 )  =  0
 
Theoremloge 15526 The natural logarithm of  _e. One case of Property 1b of [Cohen] p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( log `  _e )  =  1
 
Theoremrelogoprlem 15527 Lemma for relogmul 15528 and relogdiv 15529. Remark of [Cohen] p. 301 ("The proof of Property 3 is quite similar to the proof given for Property 2"). (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( ( log `  A )  e.  CC  /\  ( log `  B )  e.  CC )  ->  ( exp `  (
 ( log `  A ) F ( log `  B ) ) )  =  ( ( exp `  ( log `  A ) ) G ( exp `  ( log `  B ) ) ) )   &    |-  ( ( ( log `  A )  e.  RR  /\  ( log `  B )  e.  RR )  ->  ( ( log `  A ) F ( log `  B )
 )  e.  RR )   =>    |-  (
 ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( log `  ( A G B ) )  =  ( ( log `  A ) F ( log `  B )
 ) )
 
Theoremrelogmul 15528 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( log `  ( A  x.  B ) )  =  ( ( log `  A )  +  ( log `  B ) ) )
 
Theoremrelogdiv 15529 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( log `  ( A  /  B ) )  =  ( ( log `  A )  -  ( log `  B ) ) )
 
Theoremreexplog 15530 Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( A ^ N )  =  ( exp `  ( N  x.  ( log `  A ) ) ) )
 
Theoremrelogexp 15531 The natural logarithm of positive 
A raised to an integer power. Property 4 of [Cohen] p. 301-302, restricted to natural logarithms and integer powers  N. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  N  e.  ZZ )  ->  ( log `  ( A ^ N ) )  =  ( N  x.  ( log `  A )
 ) )
 
Theoremrelogiso 15532 The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( log  |`  RR+ )  Isom  <  ,  <  ( RR+
 ,  RR )
 
Theoremlogltb 15533 The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <  B  <->  ( log `  A )  <  ( log `  B ) ) )
 
Theoremlogleb 15534 Natural logarithm preserves  <_. (Contributed by Stefan O'Rear, 19-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  <_  B  <->  ( log `  A )  <_  ( log `  B ) ) )
 
Theoremlogrpap0b 15535 The logarithm is apart from 0 if and only if its argument is apart from 1. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( A  e.  RR+  ->  ( A #  1  <->  ( log `  A ) #  0 ) )
 
Theoremlogrpap0 15536 The logarithm is apart from 0 if its argument is apart from 1. (Contributed by Jim Kingdon, 5-Jul-2024.)
 |-  ( ( A  e.  RR+  /\  A #  1 )  ->  ( log `  A ) #  0 )
 
Theoremlogrpap0d 15537 Deduction form of logrpap0 15536. (Contributed by Jim Kingdon, 3-Jul-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  ( log `  A ) #  0 )
 
Theoremrplogcl 15538 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 21-Sep-2014.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  ( log `  A )  e.  RR+ )
 
Theoremlogge0 15539 The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  1  <_  A )  ->  0  <_  ( log `  A ) )
 
Theoremlogdivlti 15540 The  log x  /  x function is strictly decreasing on the reals greater than  _e. (Contributed by Mario Carneiro, 14-Mar-2014.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  _e  <_  A )  /\  A  <  B )  ->  ( ( log `  B )  /  B )  <  ( ( log `  A )  /  A ) )
 
Theoremrelogcld 15541 Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( log `  A )  e. 
 RR )
 
Theoremreeflogd 15542 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( exp `  ( log `  A ) )  =  A )
 
Theoremrelogmuld 15543 The natural logarithm of the product of two positive real numbers is the sum of natural logarithms. Property 2 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( log `  ( A  x.  B ) )  =  ( ( log `  A )  +  ( log `  B ) ) )
 
Theoremrelogdivd 15544 The natural logarithm of the quotient of two positive real numbers is the difference of natural logarithms. Exercise 72(a) and Property 3 of [Cohen] p. 301, restricted to natural logarithms. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( log `  ( A  /  B ) )  =  ( ( log `  A )  -  ( log `  B ) ) )
 
Theoremlogled 15545 Natural logarithm preserves  <_. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( log `  A )  <_  ( log `  B ) ) )
 
Theoremrelogefd 15546 Relationship between the natural logarithm function and the exponential function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( log `  ( exp `  A ) )  =  A )
 
Theoremrplogcld 15547 Closure of the logarithm function in the positive reals. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1  <  A )   =>    |-  ( ph  ->  ( log `  A )  e.  RR+ )
 
Theoremlogge0d 15548 The logarithm of a number greater than 1 is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1 
 <_  A )   =>    |-  ( ph  ->  0  <_  ( log `  A ) )
 
Theoremlogge0b 15549 The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020.)
 |-  ( A  e.  RR+  ->  ( 0  <_  ( log `  A )  <->  1  <_  A ) )
 
Theoremloggt0b 15550 The logarithm of a number is positive iff the number is greater than 1. (Contributed by AV, 30-May-2020.)
 |-  ( A  e.  RR+  ->  ( 0  <  ( log `  A )  <->  1  <  A ) )
 
Theoremlogle1b 15551 The logarithm of a number is less than or equal to 1 iff the number is less than or equal to Euler's constant. (Contributed by AV, 30-May-2020.)
 |-  ( A  e.  RR+  ->  ( ( log `  A )  <_  1  <->  A  <_  _e ) )
 
Theoremloglt1b 15552 The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020.)
 |-  ( A  e.  RR+  ->  ( ( log `  A )  <  1  <->  A  <  _e ) )
 
Theoremrpcxpef 15553 Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  =  ( exp `  ( B  x.  ( log `  A )
 ) ) )
 
Theoremcxpexprp 15554 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  ZZ )  ->  ( A  ^c  B )  =  ( A ^ B ) )
 
Theoremcxpexpnn 15555 Relate the complex power function to the integer power function. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  ^c  B )  =  ( A ^ B ) )
 
Theoremlogcxp 15556 Logarithm of a complex power. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR )  ->  ( log `  ( A  ^c  B ) )  =  ( B  x.  ( log `  A ) ) )
 
Theoremrpcxp0 15557 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( A  e.  RR+  ->  ( A  ^c  0 )  =  1 )
 
Theoremrpcxp1 15558 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( A  e.  RR+  ->  ( A  ^c  1 )  =  A )
 
Theorem1cxp 15559 Value of the complex power function at one. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( A  e.  CC  ->  ( 1  ^c  A )  =  1
 )
 
Theoremecxp 15560 Write the exponential function as an exponent to the power  _e. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( A  e.  CC  ->  ( _e  ^c  A )  =  ( exp `  A ) )
 
Theoremrpcncxpcl 15561 Closure of the complex power function. (Contributed by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B )  e.  CC )
 
Theoremrpcxpcl 15562 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR )  ->  ( A  ^c  B )  e.  RR+ )
 
Theoremcxpap0 15563 Complex exponentiation is apart from zero. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 12-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  B ) #  0 )
 
Theoremrpcxpadd 15564 Sum of exponents law for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 13-Jun-2024.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  ^c 
 ( B  +  C ) )  =  (
 ( A  ^c  B )  x.  ( A  ^c  C ) ) )
 
Theoremrpcxpp1 15565 Value of a nonzero complex number raised to a complex power plus one. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c 
 ( B  +  1 ) )  =  ( ( A  ^c  B )  x.  A ) )
 
Theoremrpcxpneg 15566 Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( A  ^c  -u B )  =  ( 1  /  ( A 
 ^c  B ) ) )
 
Theoremrpcxpsub 15567 Exponent subtraction law for complex exponentiation. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  ^c 
 ( B  -  C ) )  =  (
 ( A  ^c  B )  /  ( A  ^c  C ) ) )
 
Theoremrpmulcxp 15568 Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
 ( A  x.  B )  ^c  C )  =  ( ( A 
 ^c  C )  x.  ( B  ^c  C ) ) )
 
Theoremcxprec 15569 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( ( 1  /  A )  ^c  B )  =  ( 1  /  ( A  ^c  B ) ) )
 
Theoremrpdivcxp 15570 Complex exponentiation of a quotient. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  CC )  ->  (
 ( A  /  B )  ^c  C )  =  ( ( A 
 ^c  C ) 
 /  ( B  ^c  C ) ) )
 
Theoremcxpmul 15571 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  CC )  ->  ( A  ^c 
 ( B  x.  C ) )  =  (
 ( A  ^c  B )  ^c  C ) )
 
Theoremrpcxpmul2 15572 Product of exponents law for complex exponentiation. Variation on cxpmul 15571 with more general conditions on  A and  B when  C is a nonnegative integer. (Contributed by Mario Carneiro, 9-Aug-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  NN0 )  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A  ^c  B ) ^ C ) )
 
Theoremrpcxproot 15573 The complex power function allows us to write n-th roots via the idiom  A  ^c 
( 1  /  N
). (Contributed by Mario Carneiro, 6-May-2015.)
 |-  ( ( A  e.  RR+  /\  N  e.  NN )  ->  ( ( A  ^c  ( 1  /  N ) ) ^ N )  =  A )
 
Theoremabscxp 15574 Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC )  ->  ( abs `  ( A  ^c  B ) )  =  ( A 
 ^c  ( Re
 `  B ) ) )
 
Theoremcxplt 15575 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B  <  C  <->  ( A  ^c  B )  <  ( A  ^c  C ) ) )
 
Theoremcxple 15576 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-Aug-2014.)
 |-  ( ( ( A  e.  RR  /\  1  <  A )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B  <_  C  <->  ( A  ^c  B )  <_  ( A  ^c  C ) ) )
 
Theoremrpcxple2 15577 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 8-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( A  <_  B  <->  ( A  ^c  C )  <_  ( B  ^c  C ) ) )
 
Theoremrpcxplt2 15578 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+  /\  C  e.  RR+ )  ->  ( A  <  B  <->  ( A  ^c  C )  <  ( B  ^c  C ) ) )
 
Theoremcxplt3 15579 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B  <  C  <->  ( A  ^c  C )  <  ( A  ^c  B ) ) )
 
Theoremcxple3 15580 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( ( ( A  e.  RR+  /\  A  <  1 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B  <_  C  <->  ( A  ^c  C )  <_  ( A  ^c  B ) ) )
 
Theoremrpcxpsqrt 15581 The exponential function with exponent 
1  /  2 exactly matches the square root function, and thus serves as a suitable generalization to other  n-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.)
 |-  ( A  e.  RR+  ->  ( A  ^c  ( 1  /  2 ) )  =  ( sqr `  A ) )
 
Theoremlogsqrt 15582 Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  ( A  e.  RR+  ->  ( log `  ( sqr `  A ) )  =  ( ( log `  A )  /  2 ) )
 
Theoremrpcxp0d 15583 Value of the complex power function when the second argument is zero. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  ^c  0 )  =  1 )
 
Theoremrpcxp1d 15584 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  ^c  1 )  =  A )
 
Theorem1cxpd 15585 Value of the complex power function at one. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 1  ^c  A )  =  1 )
 
Theoremrpcncxpcld 15586 Closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( A  ^c  B )  e.  CC )
 
Theoremcxpltd 15587 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <  C  <->  ( A  ^c  B )  <  ( A  ^c  C ) ) )
 
Theoremcxpled 15588 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <_  C  <->  ( A  ^c  B )  <_  ( A  ^c  C ) ) )
 
Theoremrpcxpsqrtth 15589 Square root theorem over the complex numbers for the complex power function. Compare with resqrtth 11528. (Contributed by AV, 23-Dec-2022.)
 |-  ( A  e.  RR+  ->  ( ( sqr `  A )  ^c  2 )  =  A )
 
Theoremcxprecd 15590 Complex exponentiation of a reciprocal. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( ( 1  /  A )  ^c  B )  =  ( 1  /  ( A  ^c  B ) ) )
 
Theoremrpcxpmul2d 15591 Product of exponents law for complex exponentiation. Variation on cxpmul 15571 with more general conditions on  A and  B when  C is a nonnegative integer. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  NN0 )   =>    |-  ( ph  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A 
 ^c  B ) ^ C ) )
 
Theoremrpcxpcld 15592 Positive real closure of the complex power function. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A  ^c  B )  e.  RR+ )
 
Theoremlogcxpd 15593 Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( log `  ( A  ^c  B ) )  =  ( B  x.  ( log `  A )
 ) )
 
Theoremcxplt3d 15594 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  1
 )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <  C  <->  ( A  ^c  C )  <  ( A  ^c  B ) ) )
 
Theoremcxple3d 15595 Ordering property for complex exponentiation. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  A  <  1
 )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( B  <_  C  <->  ( A  ^c  C )  <_  ( A  ^c  B ) ) )
 
Theoremcxpmuld 15596 Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of [Gleason] p. 135. (Contributed by Mario Carneiro, 30-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  CC )   =>    |-  ( ph  ->  ( A  ^c  ( B  x.  C ) )  =  ( ( A 
 ^c  B ) 
 ^c  C ) )
 
Theoremcxpcom 15597 Commutative law for real exponentiation. (Contributed by AV, 29-Dec-2022.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  C  e.  RR )  ->  ( ( A  ^c  B )  ^c  C )  =  (
 ( A  ^c  C )  ^c  B ) )
 
Theoremapcxp2 15598 Apartness and real exponentiation. (Contributed by Jim Kingdon, 10-Jul-2024.)
 |-  ( ( ( A  e.  RR+  /\  A #  1
 )  /\  ( B  e.  RR  /\  C  e.  RR ) )  ->  ( B #  C  <->  ( A  ^c  B ) #  ( A 
 ^c  C ) ) )
 
Theoremrpabscxpbnd 15599 Bound on the absolute value of a complex power. (Contributed by Mario Carneiro, 15-Sep-2014.) (Revised by Jim Kingdon, 19-Jun-2024.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  0  <  ( Re `  B ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <_  M )   =>    |-  ( ph  ->  ( abs `  ( A  ^c  B ) )  <_  ( ( M  ^c  ( Re `  B ) )  x.  ( exp `  (
 ( abs `  B )  x.  pi ) ) ) )
 
Theoremltexp2 15600 Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( ( ( A  e.  RR  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  1  <  A )  ->  ( M  <  N  <->  ( A ^ M )  <  ( A ^ N ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16383
  Copyright terms: Public domain < Previous  Next >