| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem1cl | GIF version | ||
| Description: Lemma for gausslemma2dlem1 15312. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2dlem1cl.a | ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem1cl | ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem1cl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) | |
| 2 | 1 | elfzelzd 10103 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 3 | 2z 9356 | . . . 4 ⊢ 2 ∈ ℤ | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 5 | 2, 4 | zmulcld 9456 | . 2 ⊢ (𝜑 → (𝐴 · 2) ∈ ℤ) |
| 6 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 7 | eldifi 3286 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 8 | prmz 12289 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 10 | 9, 5 | zsubcld 9455 | . 2 ⊢ (𝜑 → (𝑃 − (𝐴 · 2)) ∈ ℤ) |
| 11 | zq 9702 | . . . 4 ⊢ ((𝐴 · 2) ∈ ℤ → (𝐴 · 2) ∈ ℚ) | |
| 12 | 5, 11 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 · 2) ∈ ℚ) |
| 13 | 2nn 9154 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
| 15 | znq 9700 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 / 2) ∈ ℚ) | |
| 16 | 9, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑃 / 2) ∈ ℚ) |
| 17 | qdclt 10337 | . . 3 ⊢ (((𝐴 · 2) ∈ ℚ ∧ (𝑃 / 2) ∈ ℚ) → DECID (𝐴 · 2) < (𝑃 / 2)) | |
| 18 | 12, 16, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → DECID (𝐴 · 2) < (𝑃 / 2)) |
| 19 | 5, 10, 18 | ifcldcd 3598 | 1 ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 ifcif 3562 {csn 3623 class class class wbr 4034 ↦ cmpt 4095 (class class class)co 5923 1c1 7882 · cmul 7886 < clt 8063 − cmin 8199 / cdiv 8701 ℕcn 8992 2c2 9043 ℤcz 9328 ℚcq 9695 ...cfz 10085 ℙcprime 12285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-n0 9252 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-fz 10086 df-prm 12286 |
| This theorem is referenced by: gausslemma2dlem1f1o 15311 |
| Copyright terms: Public domain | W3C validator |