| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gausslemma2dlem1cl | GIF version | ||
| Description: Lemma for gausslemma2dlem1 15748. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2dlem1cl.a | ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) |
| Ref | Expression |
|---|---|
| gausslemma2dlem1cl | ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem1cl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) | |
| 2 | 1 | elfzelzd 10230 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 3 | 2z 9482 | . . . 4 ⊢ 2 ∈ ℤ | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
| 5 | 2, 4 | zmulcld 9583 | . 2 ⊢ (𝜑 → (𝐴 · 2) ∈ ℤ) |
| 6 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 7 | eldifi 3326 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 8 | prmz 12641 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 10 | 9, 5 | zsubcld 9582 | . 2 ⊢ (𝜑 → (𝑃 − (𝐴 · 2)) ∈ ℤ) |
| 11 | zq 9829 | . . . 4 ⊢ ((𝐴 · 2) ∈ ℤ → (𝐴 · 2) ∈ ℚ) | |
| 12 | 5, 11 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 · 2) ∈ ℚ) |
| 13 | 2nn 9280 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
| 15 | znq 9827 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 / 2) ∈ ℚ) | |
| 16 | 9, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑃 / 2) ∈ ℚ) |
| 17 | qdclt 10473 | . . 3 ⊢ (((𝐴 · 2) ∈ ℚ ∧ (𝑃 / 2) ∈ ℚ) → DECID (𝐴 · 2) < (𝑃 / 2)) | |
| 18 | 12, 16, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → DECID (𝐴 · 2) < (𝑃 / 2)) |
| 19 | 5, 10, 18 | ifcldcd 3640 | 1 ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∖ cdif 3194 ifcif 3602 {csn 3666 class class class wbr 4083 ↦ cmpt 4145 (class class class)co 6007 1c1 8008 · cmul 8012 < clt 8189 − cmin 8325 / cdiv 8827 ℕcn 9118 2c2 9169 ℤcz 9454 ℚcq 9822 ...cfz 10212 ℙcprime 12637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-prm 12638 |
| This theorem is referenced by: gausslemma2dlem1f1o 15747 |
| Copyright terms: Public domain | W3C validator |