![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gausslemma2dlem1cl | GIF version |
Description: Lemma for gausslemma2dlem1 15269. Closure of the body of the definition of 𝑅. (Contributed by Jim Kingdon, 10-Aug-2025.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
gausslemma2dlem1cl.a | ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) |
Ref | Expression |
---|---|
gausslemma2dlem1cl | ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem1cl.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (1...𝐻)) | |
2 | 1 | elfzelzd 10098 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
3 | 2z 9351 | . . . 4 ⊢ 2 ∈ ℤ | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 2 ∈ ℤ) |
5 | 2, 4 | zmulcld 9451 | . 2 ⊢ (𝜑 → (𝐴 · 2) ∈ ℤ) |
6 | gausslemma2d.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
7 | eldifi 3285 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
8 | prmz 12255 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
9 | 6, 7, 8 | 3syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
10 | 9, 5 | zsubcld 9450 | . 2 ⊢ (𝜑 → (𝑃 − (𝐴 · 2)) ∈ ℤ) |
11 | zq 9697 | . . . 4 ⊢ ((𝐴 · 2) ∈ ℤ → (𝐴 · 2) ∈ ℚ) | |
12 | 5, 11 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴 · 2) ∈ ℚ) |
13 | 2nn 9149 | . . . . 5 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ) |
15 | znq 9695 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑃 / 2) ∈ ℚ) | |
16 | 9, 14, 15 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑃 / 2) ∈ ℚ) |
17 | qdclt 10321 | . . 3 ⊢ (((𝐴 · 2) ∈ ℚ ∧ (𝑃 / 2) ∈ ℚ) → DECID (𝐴 · 2) < (𝑃 / 2)) | |
18 | 12, 16, 17 | syl2anc 411 | . 2 ⊢ (𝜑 → DECID (𝐴 · 2) < (𝑃 / 2)) |
19 | 5, 10, 18 | ifcldcd 3597 | 1 ⊢ (𝜑 → if((𝐴 · 2) < (𝑃 / 2), (𝐴 · 2), (𝑃 − (𝐴 · 2))) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∖ cdif 3154 ifcif 3561 {csn 3622 class class class wbr 4033 ↦ cmpt 4094 (class class class)co 5922 1c1 7878 · cmul 7882 < clt 8059 − cmin 8195 / cdiv 8696 ℕcn 8987 2c2 9038 ℤcz 9323 ℚcq 9690 ...cfz 10080 ℙcprime 12251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulrcl 7976 ax-addcom 7977 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-i2m1 7982 ax-0lt1 7983 ax-1rid 7984 ax-0id 7985 ax-rnegex 7986 ax-precex 7987 ax-cnre 7988 ax-pre-ltirr 7989 ax-pre-ltwlin 7990 ax-pre-lttrn 7991 ax-pre-apti 7992 ax-pre-ltadd 7993 ax-pre-mulgt0 7994 ax-pre-mulext 7995 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8061 df-mnf 8062 df-xr 8063 df-ltxr 8064 df-le 8065 df-sub 8197 df-neg 8198 df-reap 8599 df-ap 8606 df-div 8697 df-inn 8988 df-2 9046 df-n0 9247 df-z 9324 df-uz 9599 df-q 9691 df-rp 9726 df-fz 10081 df-prm 12252 |
This theorem is referenced by: gausslemma2dlem1f1o 15268 |
Copyright terms: Public domain | W3C validator |