![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0o | GIF version |
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
nn0o | ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0o1gt2 12046 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | |
2 | 1m1e0 9051 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
3 | 2 | oveq1i 5928 | . . . . . . 7 ⊢ ((1 − 1) / 2) = (0 / 2) |
4 | 2cn 9053 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
5 | 2ap0 9075 | . . . . . . . 8 ⊢ 2 # 0 | |
6 | 4, 5 | div0api 8765 | . . . . . . 7 ⊢ (0 / 2) = 0 |
7 | 3, 6 | eqtri 2214 | . . . . . 6 ⊢ ((1 − 1) / 2) = 0 |
8 | 0nn0 9255 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
9 | 7, 8 | eqeltri 2266 | . . . . 5 ⊢ ((1 − 1) / 2) ∈ ℕ0 |
10 | oveq1 5925 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
11 | 10 | oveq1d 5933 | . . . . . . 7 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2)) |
12 | 11 | eleq1d 2262 | . . . . . 6 ⊢ (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
14 | 9, 13 | mpbiri 168 | . . . 4 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
15 | 14 | ex 115 | . . 3 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
16 | 2z 9345 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
17 | 16 | a1i 9 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ) |
18 | nn0z 9337 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antrl 490 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ) |
20 | 2re 9052 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
21 | nn0re 9249 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
22 | ltle 8107 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁)) | |
23 | 20, 21, 22 | sylancr 414 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁)) |
24 | 23 | adantr 276 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁)) |
25 | 24 | impcom 125 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁) |
26 | eluz2 9598 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
27 | 17, 19, 25, 26 | syl3anbrc 1183 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ≥‘2)) |
28 | simprr 531 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0) | |
29 | 27, 28 | jca 306 | . . . . 5 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) |
30 | nno 12047 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | |
31 | nnnn0 9247 | . . . . 5 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0) | |
32 | 29, 30, 31 | 3syl 17 | . . . 4 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
33 | 32 | ex 115 | . . 3 ⊢ (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
34 | 15, 33 | jaoi 717 | . 2 ⊢ ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
35 | 1, 34 | mpcom 36 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 < clt 8054 ≤ cle 8055 − cmin 8190 / cdiv 8691 ℕcn 8982 2c2 9033 ℕ0cn0 9240 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: nn0ob 12049 |
Copyright terms: Public domain | W3C validator |