ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o GIF version

Theorem nn0o 12218
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)

Proof of Theorem nn0o
StepHypRef Expression
1 nn0o1gt2 12216 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
2 1m1e0 9105 . . . . . . . 8 (1 − 1) = 0
32oveq1i 5954 . . . . . . 7 ((1 − 1) / 2) = (0 / 2)
4 2cn 9107 . . . . . . . 8 2 ∈ ℂ
5 2ap0 9129 . . . . . . . 8 2 # 0
64, 5div0api 8819 . . . . . . 7 (0 / 2) = 0
73, 6eqtri 2226 . . . . . 6 ((1 − 1) / 2) = 0
8 0nn0 9310 . . . . . 6 0 ∈ ℕ0
97, 8eqeltri 2278 . . . . 5 ((1 − 1) / 2) ∈ ℕ0
10 oveq1 5951 . . . . . . . 8 (𝑁 = 1 → (𝑁 − 1) = (1 − 1))
1110oveq1d 5959 . . . . . . 7 (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2))
1211eleq1d 2274 . . . . . 6 (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
1312adantr 276 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0))
149, 13mpbiri 168 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
1514ex 115 . . 3 (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
16 2z 9400 . . . . . . . 8 2 ∈ ℤ
1716a1i 9 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ)
18 nn0z 9392 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
1918ad2antrl 490 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ)
20 2re 9106 . . . . . . . . . 10 2 ∈ ℝ
21 nn0re 9304 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
22 ltle 8160 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
2320, 21, 22sylancr 414 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁))
2423adantr 276 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁))
2524impcom 125 . . . . . . 7 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁)
26 eluz2 9654 . . . . . . 7 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
2717, 19, 25, 26syl3anbrc 1184 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ‘2))
28 simprr 531 . . . . . 6 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0)
2927, 28jca 306 . . . . 5 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0))
30 nno 12217 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
31 nnnn0 9302 . . . . 5 (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0)
3229, 30, 313syl 17 . . . 4 ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0)
3332ex 115 . . 3 (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
3415, 33jaoi 718 . 2 ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0))
351, 34mpcom 36 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   < clt 8107  cle 8108  cmin 8243   / cdiv 8745  cn 9036  2c2 9087  0cn0 9295  cz 9372  cuz 9648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649
This theorem is referenced by:  nn0ob  12219
  Copyright terms: Public domain W3C validator