![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0o | GIF version |
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
Ref | Expression |
---|---|
nn0o | ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0o1gt2 11902 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁)) | |
2 | 1m1e0 8984 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
3 | 2 | oveq1i 5882 | . . . . . . 7 ⊢ ((1 − 1) / 2) = (0 / 2) |
4 | 2cn 8986 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
5 | 2ap0 9008 | . . . . . . . 8 ⊢ 2 # 0 | |
6 | 4, 5 | div0api 8699 | . . . . . . 7 ⊢ (0 / 2) = 0 |
7 | 3, 6 | eqtri 2198 | . . . . . 6 ⊢ ((1 − 1) / 2) = 0 |
8 | 0nn0 9187 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
9 | 7, 8 | eqeltri 2250 | . . . . 5 ⊢ ((1 − 1) / 2) ∈ ℕ0 |
10 | oveq1 5879 | . . . . . . . 8 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
11 | 10 | oveq1d 5887 | . . . . . . 7 ⊢ (𝑁 = 1 → ((𝑁 − 1) / 2) = ((1 − 1) / 2)) |
12 | 11 | eleq1d 2246 | . . . . . 6 ⊢ (𝑁 = 1 → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (((𝑁 − 1) / 2) ∈ ℕ0 ↔ ((1 − 1) / 2) ∈ ℕ0)) |
14 | 9, 13 | mpbiri 168 | . . . 4 ⊢ ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
15 | 14 | ex 115 | . . 3 ⊢ (𝑁 = 1 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
16 | 2z 9277 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
17 | 16 | a1i 9 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ∈ ℤ) |
18 | nn0z 9269 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antrl 490 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ ℤ) |
20 | 2re 8985 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
21 | nn0re 9181 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
22 | ltle 8041 | . . . . . . . . . 10 ⊢ ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁)) | |
23 | 20, 21, 22 | sylancr 414 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (2 < 𝑁 → 2 ≤ 𝑁)) |
24 | 23 | adantr 276 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 < 𝑁 → 2 ≤ 𝑁)) |
25 | 24 | impcom 125 | . . . . . . 7 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 2 ≤ 𝑁) |
26 | eluz2 9530 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁)) | |
27 | 17, 19, 25, 26 | syl3anbrc 1181 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → 𝑁 ∈ (ℤ≥‘2)) |
28 | simprr 531 | . . . . . 6 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 + 1) / 2) ∈ ℕ0) | |
29 | 27, 28 | jca 306 | . . . . 5 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → (𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) |
30 | nno 11903 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | |
31 | nnnn0 9179 | . . . . 5 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → ((𝑁 − 1) / 2) ∈ ℕ0) | |
32 | 29, 30, 31 | 3syl 17 | . . . 4 ⊢ ((2 < 𝑁 ∧ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0)) → ((𝑁 − 1) / 2) ∈ ℕ0) |
33 | 32 | ex 115 | . . 3 ⊢ (2 < 𝑁 → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
34 | 15, 33 | jaoi 716 | . 2 ⊢ ((𝑁 = 1 ∨ 2 < 𝑁) → ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)) |
35 | 1, 34 | mpcom 36 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 class class class wbr 4002 ‘cfv 5215 (class class class)co 5872 ℝcr 7807 0cc0 7808 1c1 7809 + caddc 7811 < clt 7988 ≤ cle 7989 − cmin 8124 / cdiv 8625 ℕcn 8915 2c2 8966 ℕ0cn0 9172 ℤcz 9249 ℤ≥cuz 9524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7899 ax-resscn 7900 ax-1cn 7901 ax-1re 7902 ax-icn 7903 ax-addcl 7904 ax-addrcl 7905 ax-mulcl 7906 ax-mulrcl 7907 ax-addcom 7908 ax-mulcom 7909 ax-addass 7910 ax-mulass 7911 ax-distr 7912 ax-i2m1 7913 ax-0lt1 7914 ax-1rid 7915 ax-0id 7916 ax-rnegex 7917 ax-precex 7918 ax-cnre 7919 ax-pre-ltirr 7920 ax-pre-ltwlin 7921 ax-pre-lttrn 7922 ax-pre-apti 7923 ax-pre-ltadd 7924 ax-pre-mulgt0 7925 ax-pre-mulext 7926 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-po 4295 df-iso 4296 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-fv 5223 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-pnf 7990 df-mnf 7991 df-xr 7992 df-ltxr 7993 df-le 7994 df-sub 8126 df-neg 8127 df-reap 8528 df-ap 8535 df-div 8626 df-inn 8916 df-2 8974 df-3 8975 df-4 8976 df-n0 9173 df-z 9250 df-uz 9525 |
This theorem is referenced by: nn0ob 11905 |
Copyright terms: Public domain | W3C validator |