![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnmcl | GIF version |
Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nnmcl | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5736 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝐵)) | |
2 | 1 | eleq1d 2183 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝐵) ∈ ω)) |
3 | 2 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω))) |
4 | oveq2 5736 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐴 ·o 𝑥) = (𝐴 ·o ∅)) | |
5 | 4 | eleq1d 2183 | . . . 4 ⊢ (𝑥 = ∅ → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o ∅) ∈ ω)) |
6 | oveq2 5736 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o 𝑦)) | |
7 | 6 | eleq1d 2183 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o 𝑦) ∈ ω)) |
8 | oveq2 5736 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐴 ·o 𝑥) = (𝐴 ·o suc 𝑦)) | |
9 | 8 | eleq1d 2183 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝐴 ·o 𝑥) ∈ ω ↔ (𝐴 ·o suc 𝑦) ∈ ω)) |
10 | nnm0 6325 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) = ∅) | |
11 | peano1 4468 | . . . . 5 ⊢ ∅ ∈ ω | |
12 | 10, 11 | syl6eqel 2205 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ·o ∅) ∈ ω) |
13 | nnacl 6330 | . . . . . . . 8 ⊢ (((𝐴 ·o 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω) | |
14 | 13 | expcom 115 | . . . . . . 7 ⊢ (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
15 | 14 | adantr 272 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
16 | nnmsuc 6327 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·o suc 𝑦) = ((𝐴 ·o 𝑦) +o 𝐴)) | |
17 | 16 | eleq1d 2183 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o suc 𝑦) ∈ ω ↔ ((𝐴 ·o 𝑦) +o 𝐴) ∈ ω)) |
18 | 15, 17 | sylibrd 168 | . . . . 5 ⊢ ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω)) |
19 | 18 | expcom 115 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·o 𝑦) ∈ ω → (𝐴 ·o suc 𝑦) ∈ ω))) |
20 | 5, 7, 9, 12, 19 | finds2 4475 | . . 3 ⊢ (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝑥) ∈ ω)) |
21 | 3, 20 | vtoclga 2723 | . 2 ⊢ (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·o 𝐵) ∈ ω)) |
22 | 21 | impcom 124 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) ∈ ω) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∅c0 3329 suc csuc 4247 ωcom 4464 (class class class)co 5728 +o coa 6264 ·o comu 6265 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-irdg 6221 df-oadd 6271 df-omul 6272 |
This theorem is referenced by: nnmcli 6333 nndi 6336 nnmass 6337 nnmsucr 6338 nnmordi 6366 nnmord 6367 nnmword 6368 mulclpi 7081 enq0tr 7187 addcmpblnq0 7196 mulcmpblnq0 7197 mulcanenq0ec 7198 addclnq0 7204 mulclnq0 7205 nqpnq0nq 7206 distrnq0 7212 addassnq0lemcl 7214 addassnq0 7215 |
Copyright terms: Public domain | W3C validator |