ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plyun0 Unicode version

Theorem plyun0 14915
Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
plyun0  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )

Proof of Theorem plyun0
Dummy variables  a  f  n  k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 8013 . . . . . . 7  |-  0  e.  CC
2 snssi 3763 . . . . . . 7  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
31, 2ax-mp 5 . . . . . 6  |-  { 0 }  C_  CC
43biantru 302 . . . . 5  |-  ( S 
C_  CC  <->  ( S  C_  CC  /\  { 0 } 
C_  CC ) )
5 unss 3334 . . . . 5  |-  ( ( S  C_  CC  /\  {
0 }  C_  CC ) 
<->  ( S  u.  {
0 } )  C_  CC )
64, 5bitr2i 185 . . . 4  |-  ( ( S  u.  { 0 } )  C_  CC  <->  S 
C_  CC )
7 unass 3317 . . . . . . . 8  |-  ( ( S  u.  { 0 } )  u.  {
0 } )  =  ( S  u.  ( { 0 }  u.  { 0 } ) )
8 unidm 3303 . . . . . . . . 9  |-  ( { 0 }  u.  {
0 } )  =  { 0 }
98uneq2i 3311 . . . . . . . 8  |-  ( S  u.  ( { 0 }  u.  { 0 } ) )  =  ( S  u.  {
0 } )
107, 9eqtri 2214 . . . . . . 7  |-  ( ( S  u.  { 0 } )  u.  {
0 } )  =  ( S  u.  {
0 } )
1110oveq1i 5929 . . . . . 6  |-  ( ( ( S  u.  {
0 } )  u. 
{ 0 } )  ^m  NN0 )  =  ( ( S  u.  { 0 } )  ^m  NN0 )
1211rexeqi 2695 . . . . 5  |-  ( E. a  e.  ( ( ( S  u.  {
0 } )  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) )  <->  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
1312rexbii 2501 . . . 4  |-  ( E. n  e.  NN0  E. a  e.  ( ( ( S  u.  { 0 } )  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )  <->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) )
146, 13anbi12i 460 . . 3  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( ( S  u.  { 0 } )  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )  <->  ( S  C_  CC  /\  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
15 elply 14913 . . 3  |-  ( f  e.  (Poly `  ( S  u.  { 0 } ) )  <->  ( ( S  u.  { 0 } )  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( ( S  u.  {
0 } )  u. 
{ 0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) ) )
16 elply 14913 . . 3  |-  ( f  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) f  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) ) ) )
1714, 15, 163bitr4i 212 . 2  |-  ( f  e.  (Poly `  ( S  u.  { 0 } ) )  <->  f  e.  (Poly `  S ) )
1817eqriv 2190 1  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473    u. cun 3152    C_ wss 3154   {csn 3619    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919    ^m cmap 6704   CCcc 7872   0cc0 7874    x. cmul 7879   NN0cn0 9243   ...cfz 10077   ^cexp 10612   sum_csu 11499  Polycply 14907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-i2m1 7979
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-inn 8985  df-n0 9244  df-ply 14909
This theorem is referenced by:  elplyd  14920  ply1term  14922  plyaddlem  14928  plymullem  14929  plycolemc  14936  plycj  14939
  Copyright terms: Public domain W3C validator