| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > plyun0 | Unicode version | ||
| Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) | 
| Ref | Expression | 
|---|---|
| plyun0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0cn 8018 | 
. . . . . . 7
 | |
| 2 | snssi 3766 | 
. . . . . . 7
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . . . . 6
 | 
| 4 | 3 | biantru 302 | 
. . . . 5
 | 
| 5 | unss 3337 | 
. . . . 5
 | |
| 6 | 4, 5 | bitr2i 185 | 
. . . 4
 | 
| 7 | unass 3320 | 
. . . . . . . 8
 | |
| 8 | unidm 3306 | 
. . . . . . . . 9
 | |
| 9 | 8 | uneq2i 3314 | 
. . . . . . . 8
 | 
| 10 | 7, 9 | eqtri 2217 | 
. . . . . . 7
 | 
| 11 | 10 | oveq1i 5932 | 
. . . . . 6
 | 
| 12 | 11 | rexeqi 2698 | 
. . . . 5
 | 
| 13 | 12 | rexbii 2504 | 
. . . 4
 | 
| 14 | 6, 13 | anbi12i 460 | 
. . 3
 | 
| 15 | elply 14970 | 
. . 3
 | |
| 16 | elply 14970 | 
. . 3
 | |
| 17 | 14, 15, 16 | 3bitr4i 212 | 
. 2
 | 
| 18 | 17 | eqriv 2193 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-i2m1 7984 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-inn 8991 df-n0 9250 df-ply 14966 | 
| This theorem is referenced by: elplyd 14977 ply1term 14979 plyaddlem 14985 plymullem 14986 plycolemc 14994 plycj 14997 | 
| Copyright terms: Public domain | W3C validator |