| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plycj | Unicode version | ||
| Description: The double conjugation of
a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on |
| Ref | Expression |
|---|---|
| plycj.2 |
|
| plycj.3 |
|
| plycj.4 |
|
| Ref | Expression |
|---|---|
| plycj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycj.4 |
. . . 4
| |
| 2 | elply 15416 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | 3 | simprd 114 |
. 2
|
| 5 | simplrl 535 |
. . . . . . 7
| |
| 6 | plycj.2 |
. . . . . . 7
| |
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | cnex 8131 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . 12
|
| 10 | 3 | simpld 112 |
. . . . . . . . . . . 12
|
| 11 | 9, 10 | ssexd 4224 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2antrr 488 |
. . . . . . . . . 10
|
| 13 | c0ex 8148 |
. . . . . . . . . . 11
| |
| 14 | 13 | snex 4269 |
. . . . . . . . . 10
|
| 15 | unexg 4534 |
. . . . . . . . . 10
| |
| 16 | 12, 14, 15 | sylancl 413 |
. . . . . . . . 9
|
| 17 | nn0ex 9383 |
. . . . . . . . . 10
| |
| 18 | 17 | a1i 9 |
. . . . . . . . 9
|
| 19 | 16, 18 | elmapd 6817 |
. . . . . . . 8
|
| 20 | 7, 19 | mpbid 147 |
. . . . . . 7
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | oveq1 6014 |
. . . . . . . . . . . 12
| |
| 23 | 22 | oveq2d 6023 |
. . . . . . . . . . 11
|
| 24 | 23 | sumeq2sdv 11889 |
. . . . . . . . . 10
|
| 25 | 24 | cbvmptv 4180 |
. . . . . . . . 9
|
| 26 | fveq2 5629 |
. . . . . . . . . . . 12
| |
| 27 | oveq2 6015 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | oveq12d 6025 |
. . . . . . . . . . 11
|
| 29 | 28 | cbvsumv 11880 |
. . . . . . . . . 10
|
| 30 | 29 | mpteq2i 4171 |
. . . . . . . . 9
|
| 31 | 25, 30 | eqtri 2250 |
. . . . . . . 8
|
| 32 | 21, 31 | eqtrdi 2278 |
. . . . . . 7
|
| 33 | 1 | ad2antrr 488 |
. . . . . . 7
|
| 34 | 5, 6, 20, 32, 33 | plycjlemc 15442 |
. . . . . 6
|
| 35 | 0cn 8146 |
. . . . . . . . . 10
| |
| 36 | snssi 3812 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
|
| 38 | 10, 37 | unssd 3380 |
. . . . . . . 8
|
| 39 | 38 | ad2antrr 488 |
. . . . . . 7
|
| 40 | 20 | adantr 276 |
. . . . . . . . 9
|
| 41 | elfznn0 10318 |
. . . . . . . . . 10
| |
| 42 | 41 | adantl 277 |
. . . . . . . . 9
|
| 43 | fvco3 5707 |
. . . . . . . . 9
| |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . 8
|
| 45 | 40, 42 | ffvelcdmd 5773 |
. . . . . . . . 9
|
| 46 | plycj.3 |
. . . . . . . . . . . . . 14
| |
| 47 | 46 | ralrimiva 2603 |
. . . . . . . . . . . . 13
|
| 48 | fveq2 5629 |
. . . . . . . . . . . . . . 15
| |
| 49 | 48 | eleq1d 2298 |
. . . . . . . . . . . . . 14
|
| 50 | 49 | rspccv 2904 |
. . . . . . . . . . . . 13
|
| 51 | 47, 50 | syl 14 |
. . . . . . . . . . . 12
|
| 52 | elsni 3684 |
. . . . . . . . . . . . . . . 16
| |
| 53 | 52 | fveq2d 5633 |
. . . . . . . . . . . . . . 15
|
| 54 | cj0 11420 |
. . . . . . . . . . . . . . 15
| |
| 55 | 53, 54 | eqtrdi 2278 |
. . . . . . . . . . . . . 14
|
| 56 | 55, 35 | eqeltrdi 2320 |
. . . . . . . . . . . . . . 15
|
| 57 | elsng 3681 |
. . . . . . . . . . . . . . 15
| |
| 58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . 14
|
| 59 | 55, 58 | mpbird 167 |
. . . . . . . . . . . . 13
|
| 60 | 59 | a1i 9 |
. . . . . . . . . . . 12
|
| 61 | 51, 60 | orim12d 791 |
. . . . . . . . . . 11
|
| 62 | elun 3345 |
. . . . . . . . . . 11
| |
| 63 | elun 3345 |
. . . . . . . . . . 11
| |
| 64 | 61, 62, 63 | 3imtr4g 205 |
. . . . . . . . . 10
|
| 65 | 64 | ad3antrrr 492 |
. . . . . . . . 9
|
| 66 | 45, 65 | mpd 13 |
. . . . . . . 8
|
| 67 | 44, 66 | eqeltrd 2306 |
. . . . . . 7
|
| 68 | 39, 5, 67 | elplyd 15423 |
. . . . . 6
|
| 69 | 34, 68 | eqeltrd 2306 |
. . . . 5
|
| 70 | plyun0 15418 |
. . . . 5
| |
| 71 | 69, 70 | eleqtrdi 2322 |
. . . 4
|
| 72 | 71 | ex 115 |
. . 3
|
| 73 | 72 | rexlimdvva 2656 |
. 2
|
| 74 | 4, 73 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-map 6805 df-en 6896 df-dom 6897 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-ihash 11006 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ply 15412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |