| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plycj | Unicode version | ||
| Description: The double conjugation of
a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on |
| Ref | Expression |
|---|---|
| plycj.2 |
|
| plycj.3 |
|
| plycj.4 |
|
| Ref | Expression |
|---|---|
| plycj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycj.4 |
. . . 4
| |
| 2 | elply 15250 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | 3 | simprd 114 |
. 2
|
| 5 | simplrl 535 |
. . . . . . 7
| |
| 6 | plycj.2 |
. . . . . . 7
| |
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | cnex 8056 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . 12
|
| 10 | 3 | simpld 112 |
. . . . . . . . . . . 12
|
| 11 | 9, 10 | ssexd 4188 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2antrr 488 |
. . . . . . . . . 10
|
| 13 | c0ex 8073 |
. . . . . . . . . . 11
| |
| 14 | 13 | snex 4233 |
. . . . . . . . . 10
|
| 15 | unexg 4494 |
. . . . . . . . . 10
| |
| 16 | 12, 14, 15 | sylancl 413 |
. . . . . . . . 9
|
| 17 | nn0ex 9308 |
. . . . . . . . . 10
| |
| 18 | 17 | a1i 9 |
. . . . . . . . 9
|
| 19 | 16, 18 | elmapd 6756 |
. . . . . . . 8
|
| 20 | 7, 19 | mpbid 147 |
. . . . . . 7
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | oveq1 5958 |
. . . . . . . . . . . 12
| |
| 23 | 22 | oveq2d 5967 |
. . . . . . . . . . 11
|
| 24 | 23 | sumeq2sdv 11725 |
. . . . . . . . . 10
|
| 25 | 24 | cbvmptv 4144 |
. . . . . . . . 9
|
| 26 | fveq2 5583 |
. . . . . . . . . . . 12
| |
| 27 | oveq2 5959 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | oveq12d 5969 |
. . . . . . . . . . 11
|
| 29 | 28 | cbvsumv 11716 |
. . . . . . . . . 10
|
| 30 | 29 | mpteq2i 4135 |
. . . . . . . . 9
|
| 31 | 25, 30 | eqtri 2227 |
. . . . . . . 8
|
| 32 | 21, 31 | eqtrdi 2255 |
. . . . . . 7
|
| 33 | 1 | ad2antrr 488 |
. . . . . . 7
|
| 34 | 5, 6, 20, 32, 33 | plycjlemc 15276 |
. . . . . 6
|
| 35 | 0cn 8071 |
. . . . . . . . . 10
| |
| 36 | snssi 3779 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
|
| 38 | 10, 37 | unssd 3350 |
. . . . . . . 8
|
| 39 | 38 | ad2antrr 488 |
. . . . . . 7
|
| 40 | 20 | adantr 276 |
. . . . . . . . 9
|
| 41 | elfznn0 10243 |
. . . . . . . . . 10
| |
| 42 | 41 | adantl 277 |
. . . . . . . . 9
|
| 43 | fvco3 5657 |
. . . . . . . . 9
| |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . 8
|
| 45 | 40, 42 | ffvelcdmd 5723 |
. . . . . . . . 9
|
| 46 | plycj.3 |
. . . . . . . . . . . . . 14
| |
| 47 | 46 | ralrimiva 2580 |
. . . . . . . . . . . . 13
|
| 48 | fveq2 5583 |
. . . . . . . . . . . . . . 15
| |
| 49 | 48 | eleq1d 2275 |
. . . . . . . . . . . . . 14
|
| 50 | 49 | rspccv 2875 |
. . . . . . . . . . . . 13
|
| 51 | 47, 50 | syl 14 |
. . . . . . . . . . . 12
|
| 52 | elsni 3652 |
. . . . . . . . . . . . . . . 16
| |
| 53 | 52 | fveq2d 5587 |
. . . . . . . . . . . . . . 15
|
| 54 | cj0 11256 |
. . . . . . . . . . . . . . 15
| |
| 55 | 53, 54 | eqtrdi 2255 |
. . . . . . . . . . . . . 14
|
| 56 | 55, 35 | eqeltrdi 2297 |
. . . . . . . . . . . . . . 15
|
| 57 | elsng 3649 |
. . . . . . . . . . . . . . 15
| |
| 58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . 14
|
| 59 | 55, 58 | mpbird 167 |
. . . . . . . . . . . . 13
|
| 60 | 59 | a1i 9 |
. . . . . . . . . . . 12
|
| 61 | 51, 60 | orim12d 788 |
. . . . . . . . . . 11
|
| 62 | elun 3315 |
. . . . . . . . . . 11
| |
| 63 | elun 3315 |
. . . . . . . . . . 11
| |
| 64 | 61, 62, 63 | 3imtr4g 205 |
. . . . . . . . . 10
|
| 65 | 64 | ad3antrrr 492 |
. . . . . . . . 9
|
| 66 | 45, 65 | mpd 13 |
. . . . . . . 8
|
| 67 | 44, 66 | eqeltrd 2283 |
. . . . . . 7
|
| 68 | 39, 5, 67 | elplyd 15257 |
. . . . . 6
|
| 69 | 34, 68 | eqeltrd 2283 |
. . . . 5
|
| 70 | plyun0 15252 |
. . . . 5
| |
| 71 | 69, 70 | eleqtrdi 2299 |
. . . 4
|
| 72 | 71 | ex 115 |
. . 3
|
| 73 | 72 | rexlimdvva 2632 |
. 2
|
| 74 | 4, 73 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-map 6744 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 df-ply 15246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |