ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycj Unicode version

Theorem plycj 15277
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on  ( * `  z ) independently of  z.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycj.3  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
plycj.4  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycj  |-  ( ph  ->  G  e.  (Poly `  S ) )
Distinct variable groups:    x, F    x, S    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem plycj
Dummy variables  k  z  a  n  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 elply 15250 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) ) )
31, 2sylib 122 . . 3  |-  ( ph  ->  ( S  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  (
w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) ) )
43simprd 114 . 2  |-  ( ph  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  (
w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
5 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  n  e.  NN0 )
6 plycj.2 . . . . . . 7  |-  G  =  ( ( *  o.  F )  o.  *
)
7 simplrr 536 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
8 cnex 8056 . . . . . . . . . . . . 13  |-  CC  e.  _V
98a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  CC  e.  _V )
103simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
119, 10ssexd 4188 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  _V )
1211ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  S  e.  _V )
13 c0ex 8073 . . . . . . . . . . 11  |-  0  e.  _V
1413snex 4233 . . . . . . . . . 10  |-  { 0 }  e.  _V
15 unexg 4494 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1612, 14, 15sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( S  u.  {
0 } )  e. 
_V )
17 nn0ex 9308 . . . . . . . . . 10  |-  NN0  e.  _V
1817a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  NN0  e.  _V )
1916, 18elmapd 6756 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
207, 19mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
a : NN0 --> ( S  u.  { 0 } ) )
21 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )
22 oveq1 5958 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w ^ j )  =  ( z ^
j ) )
2322oveq2d 5967 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
( a `  j
)  x.  ( w ^ j ) )  =  ( ( a `
 j )  x.  ( z ^ j
) ) )
2423sumeq2sdv 11725 . . . . . . . . . 10  |-  ( w  =  z  ->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( w ^ j
) )  =  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( z ^ j ) ) )
2524cbvmptv 4144 . . . . . . . . 9  |-  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( w ^ j
) ) )  =  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( z ^ j ) ) )
26 fveq2 5583 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
a `  j )  =  ( a `  k ) )
27 oveq2 5959 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
z ^ j )  =  ( z ^
k ) )
2826, 27oveq12d 5969 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( a `  j
)  x.  ( z ^ j ) )  =  ( ( a `
 k )  x.  ( z ^ k
) ) )
2928cbvsumv 11716 . . . . . . . . . 10  |-  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( z ^ j
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) )
3029mpteq2i 4135 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( z ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
3125, 30eqtri 2227 . . . . . . . 8  |-  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( w ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
3221, 31eqtrdi 2255 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
331ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  F  e.  (Poly `  S
) )
345, 6, 20, 32, 33plycjlemc 15276 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( ( *  o.  a ) `  k )  x.  (
z ^ k ) ) ) )
35 0cn 8071 . . . . . . . . . 10  |-  0  e.  CC
36 snssi 3779 . . . . . . . . . 10  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
3735, 36mp1i 10 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  CC )
3810, 37unssd 3350 . . . . . . . 8  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
4020adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a : NN0 --> ( S  u.  { 0 } ) )
41 elfznn0 10243 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
4241adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
43 fvco3 5657 . . . . . . . . 9  |-  ( ( a : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  (
( *  o.  a
) `  k )  =  ( * `  ( a `  k
) ) )
4440, 42, 43syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( *  o.  a ) `  k )  =  ( * `  ( a `
 k ) ) )
4540, 42ffvelcdmd 5723 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  ( S  u.  { 0 } ) )
46 plycj.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
4746ralrimiva 2580 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  S  ( * `  x
)  e.  S )
48 fveq2 5583 . . . . . . . . . . . . . . 15  |-  ( x  =  ( a `  k )  ->  (
* `  x )  =  ( * `  ( a `  k
) ) )
4948eleq1d 2275 . . . . . . . . . . . . . 14  |-  ( x  =  ( a `  k )  ->  (
( * `  x
)  e.  S  <->  ( * `  ( a `  k
) )  e.  S
) )
5049rspccv 2875 . . . . . . . . . . . . 13  |-  ( A. x  e.  S  (
* `  x )  e.  S  ->  ( ( a `  k )  e.  S  ->  (
* `  ( a `  k ) )  e.  S ) )
5147, 50syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( a `  k )  e.  S  ->  ( * `  (
a `  k )
)  e.  S ) )
52 elsni 3652 . . . . . . . . . . . . . . . 16  |-  ( ( a `  k )  e.  { 0 }  ->  ( a `  k )  =  0 )
5352fveq2d 5587 . . . . . . . . . . . . . . 15  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  =  ( * `  0 ) )
54 cj0 11256 . . . . . . . . . . . . . . 15  |-  ( * `
 0 )  =  0
5553, 54eqtrdi 2255 . . . . . . . . . . . . . 14  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  =  0 )
5655, 35eqeltrdi 2297 . . . . . . . . . . . . . . 15  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  e.  CC )
57 elsng 3649 . . . . . . . . . . . . . . 15  |-  ( ( * `  ( a `
 k ) )  e.  CC  ->  (
( * `  (
a `  k )
)  e.  { 0 }  <->  ( * `  ( a `  k
) )  =  0 ) )
5856, 57syl 14 . . . . . . . . . . . . . 14  |-  ( ( a `  k )  e.  { 0 }  ->  ( ( * `
 ( a `  k ) )  e. 
{ 0 }  <->  ( * `  ( a `  k
) )  =  0 ) )
5955, 58mpbird 167 . . . . . . . . . . . . 13  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  e.  {
0 } )
6059a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( a `  k )  e.  {
0 }  ->  (
* `  ( a `  k ) )  e. 
{ 0 } ) )
6151, 60orim12d 788 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( a `
 k )  e.  S  \/  ( a `
 k )  e. 
{ 0 } )  ->  ( ( * `
 ( a `  k ) )  e.  S  \/  ( * `
 ( a `  k ) )  e. 
{ 0 } ) ) )
62 elun 3315 . . . . . . . . . . 11  |-  ( ( a `  k )  e.  ( S  u.  { 0 } )  <->  ( (
a `  k )  e.  S  \/  (
a `  k )  e.  { 0 } ) )
63 elun 3315 . . . . . . . . . . 11  |-  ( ( * `  ( a `
 k ) )  e.  ( S  u.  { 0 } )  <->  ( (
* `  ( a `  k ) )  e.  S  \/  ( * `
 ( a `  k ) )  e. 
{ 0 } ) )
6461, 62, 633imtr4g 205 . . . . . . . . . 10  |-  ( ph  ->  ( ( a `  k )  e.  ( S  u.  { 0 } )  ->  (
* `  ( a `  k ) )  e.  ( S  u.  {
0 } ) ) )
6564ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( a `
 k )  e.  ( S  u.  {
0 } )  -> 
( * `  (
a `  k )
)  e.  ( S  u.  { 0 } ) ) )
6645, 65mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( a `  k
) )  e.  ( S  u.  { 0 } ) )
6744, 66eqeltrd 2283 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( *  o.  a ) `  k )  e.  ( S  u.  { 0 } ) )
6839, 5, 67elplyd 15257 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( ( *  o.  a ) `  k
)  x.  ( z ^ k ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
6934, 68eqeltrd 2283 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  G  e.  (Poly `  ( S  u.  { 0 } ) ) )
70 plyun0 15252 . . . . 5  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
7169, 70eleqtrdi 2299 . . . 4  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  G  e.  (Poly `  S
) )
7271ex 115 . . 3  |-  ( (
ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )  ->  G  e.  (Poly `  S ) ) )
7372rexlimdvva 2632 . 2  |-  ( ph  ->  ( E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )  ->  G  e.  (Poly `  S ) ) )
744, 73mpd 13 1  |-  ( ph  ->  G  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   _Vcvv 2773    u. cun 3165    C_ wss 3167   {csn 3634    |-> cmpt 4109    o. ccom 4683   -->wf 5272   ` cfv 5276  (class class class)co 5951    ^m cmap 6742   CCcc 7930   0cc0 7932    x. cmul 7937   NN0cn0 9302   ...cfz 10137   ^cexp 10690   *ccj 11194   sum_csu 11708  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-ply 15246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator