ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plycj Unicode version

Theorem plycj 15400
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on  ( * `  z ) independently of  z.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycj.3  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
plycj.4  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycj  |-  ( ph  ->  G  e.  (Poly `  S ) )
Distinct variable groups:    x, F    x, S    ph, x
Allowed substitution hint:    G( x)

Proof of Theorem plycj
Dummy variables  k  z  a  n  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 elply 15373 . . . 4  |-  ( F  e.  (Poly `  S
)  <->  ( S  C_  CC  /\  E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) ) )
31, 2sylib 122 . . 3  |-  ( ph  ->  ( S  C_  CC  /\ 
E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  (
w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) ) )
43simprd 114 . 2  |-  ( ph  ->  E. n  e.  NN0  E. a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) F  =  (
w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) ) )
5 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  n  e.  NN0 )
6 plycj.2 . . . . . . 7  |-  G  =  ( ( *  o.  F )  o.  *
)
7 simplrr 536 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
8 cnex 8091 . . . . . . . . . . . . 13  |-  CC  e.  _V
98a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  CC  e.  _V )
103simpld 112 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  CC )
119, 10ssexd 4203 . . . . . . . . . . 11  |-  ( ph  ->  S  e.  _V )
1211ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  S  e.  _V )
13 c0ex 8108 . . . . . . . . . . 11  |-  0  e.  _V
1413snex 4248 . . . . . . . . . 10  |-  { 0 }  e.  _V
15 unexg 4511 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  { 0 }  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1612, 14, 15sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( S  u.  {
0 } )  e. 
_V )
17 nn0ex 9343 . . . . . . . . . 10  |-  NN0  e.  _V
1817a1i 9 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  NN0  e.  _V )
1916, 18elmapd 6779 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( a  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  a : NN0 --> ( S  u.  { 0 } ) ) )
207, 19mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
a : NN0 --> ( S  u.  { 0 } ) )
21 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )
22 oveq1 5981 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
w ^ j )  =  ( z ^
j ) )
2322oveq2d 5990 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
( a `  j
)  x.  ( w ^ j ) )  =  ( ( a `
 j )  x.  ( z ^ j
) ) )
2423sumeq2sdv 11847 . . . . . . . . . 10  |-  ( w  =  z  ->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( w ^ j
) )  =  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( z ^ j ) ) )
2524cbvmptv 4159 . . . . . . . . 9  |-  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( w ^ j
) ) )  =  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( z ^ j ) ) )
26 fveq2 5603 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
a `  j )  =  ( a `  k ) )
27 oveq2 5982 . . . . . . . . . . . 12  |-  ( j  =  k  ->  (
z ^ j )  =  ( z ^
k ) )
2826, 27oveq12d 5992 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( a `  j
)  x.  ( z ^ j ) )  =  ( ( a `
 k )  x.  ( z ^ k
) ) )
2928cbvsumv 11838 . . . . . . . . . 10  |-  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( z ^ j
) )  =  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) )
3029mpteq2i 4150 . . . . . . . . 9  |-  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( z ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
3125, 30eqtri 2230 . . . . . . . 8  |-  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n
) ( ( a `
 j )  x.  ( w ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k
)  x.  ( z ^ k ) ) )
3221, 31eqtrdi 2258 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( a `  k )  x.  (
z ^ k ) ) ) )
331ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  F  e.  (Poly `  S
) )
345, 6, 20, 32, 33plycjlemc 15399 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( ( *  o.  a ) `  k )  x.  (
z ^ k ) ) ) )
35 0cn 8106 . . . . . . . . . 10  |-  0  e.  CC
36 snssi 3791 . . . . . . . . . 10  |-  ( 0  e.  CC  ->  { 0 }  C_  CC )
3735, 36mp1i 10 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  CC )
3810, 37unssd 3360 . . . . . . . 8  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
3938ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( S  u.  {
0 } )  C_  CC )
4020adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  a : NN0 --> ( S  u.  { 0 } ) )
41 elfznn0 10278 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
4241adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
43 fvco3 5678 . . . . . . . . 9  |-  ( ( a : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  (
( *  o.  a
) `  k )  =  ( * `  ( a `  k
) ) )
4440, 42, 43syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( *  o.  a ) `  k )  =  ( * `  ( a `
 k ) ) )
4540, 42ffvelcdmd 5744 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( a `  k )  e.  ( S  u.  { 0 } ) )
46 plycj.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
4746ralrimiva 2583 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  S  ( * `  x
)  e.  S )
48 fveq2 5603 . . . . . . . . . . . . . . 15  |-  ( x  =  ( a `  k )  ->  (
* `  x )  =  ( * `  ( a `  k
) ) )
4948eleq1d 2278 . . . . . . . . . . . . . 14  |-  ( x  =  ( a `  k )  ->  (
( * `  x
)  e.  S  <->  ( * `  ( a `  k
) )  e.  S
) )
5049rspccv 2884 . . . . . . . . . . . . 13  |-  ( A. x  e.  S  (
* `  x )  e.  S  ->  ( ( a `  k )  e.  S  ->  (
* `  ( a `  k ) )  e.  S ) )
5147, 50syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( a `  k )  e.  S  ->  ( * `  (
a `  k )
)  e.  S ) )
52 elsni 3664 . . . . . . . . . . . . . . . 16  |-  ( ( a `  k )  e.  { 0 }  ->  ( a `  k )  =  0 )
5352fveq2d 5607 . . . . . . . . . . . . . . 15  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  =  ( * `  0 ) )
54 cj0 11378 . . . . . . . . . . . . . . 15  |-  ( * `
 0 )  =  0
5553, 54eqtrdi 2258 . . . . . . . . . . . . . 14  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  =  0 )
5655, 35eqeltrdi 2300 . . . . . . . . . . . . . . 15  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  e.  CC )
57 elsng 3661 . . . . . . . . . . . . . . 15  |-  ( ( * `  ( a `
 k ) )  e.  CC  ->  (
( * `  (
a `  k )
)  e.  { 0 }  <->  ( * `  ( a `  k
) )  =  0 ) )
5856, 57syl 14 . . . . . . . . . . . . . 14  |-  ( ( a `  k )  e.  { 0 }  ->  ( ( * `
 ( a `  k ) )  e. 
{ 0 }  <->  ( * `  ( a `  k
) )  =  0 ) )
5955, 58mpbird 167 . . . . . . . . . . . . 13  |-  ( ( a `  k )  e.  { 0 }  ->  ( * `  ( a `  k
) )  e.  {
0 } )
6059a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( a `  k )  e.  {
0 }  ->  (
* `  ( a `  k ) )  e. 
{ 0 } ) )
6151, 60orim12d 790 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( a `
 k )  e.  S  \/  ( a `
 k )  e. 
{ 0 } )  ->  ( ( * `
 ( a `  k ) )  e.  S  \/  ( * `
 ( a `  k ) )  e. 
{ 0 } ) ) )
62 elun 3325 . . . . . . . . . . 11  |-  ( ( a `  k )  e.  ( S  u.  { 0 } )  <->  ( (
a `  k )  e.  S  \/  (
a `  k )  e.  { 0 } ) )
63 elun 3325 . . . . . . . . . . 11  |-  ( ( * `  ( a `
 k ) )  e.  ( S  u.  { 0 } )  <->  ( (
* `  ( a `  k ) )  e.  S  \/  ( * `
 ( a `  k ) )  e. 
{ 0 } ) )
6461, 62, 633imtr4g 205 . . . . . . . . . 10  |-  ( ph  ->  ( ( a `  k )  e.  ( S  u.  { 0 } )  ->  (
* `  ( a `  k ) )  e.  ( S  u.  {
0 } ) ) )
6564ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( a `
 k )  e.  ( S  u.  {
0 } )  -> 
( * `  (
a `  k )
)  e.  ( S  u.  { 0 } ) ) )
6645, 65mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( * `  ( a `  k
) )  e.  ( S  u.  { 0 } ) )
6744, 66eqeltrd 2286 . . . . . . 7  |-  ( ( ( ( ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  /\  k  e.  ( 0 ... n ) )  ->  ( ( *  o.  a ) `  k )  e.  ( S  u.  { 0 } ) )
6839, 5, 67elplyd 15380 . . . . . 6  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... n ) ( ( ( *  o.  a ) `  k
)  x.  ( z ^ k ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
6934, 68eqeltrd 2286 . . . . 5  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  G  e.  (Poly `  ( S  u.  { 0 } ) ) )
70 plyun0 15375 . . . . 5  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
7169, 70eleqtrdi 2302 . . . 4  |-  ( ( ( ph  /\  (
n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  /\  F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j )  x.  (
w ^ j ) ) ) )  ->  G  e.  (Poly `  S
) )
7271ex 115 . . 3  |-  ( (
ph  /\  ( n  e.  NN0  /\  a  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) ) )  -> 
( F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )  ->  G  e.  (Poly `  S ) ) )
7372rexlimdvva 2636 . 2  |-  ( ph  ->  ( E. n  e. 
NN0  E. a  e.  ( ( S  u.  {
0 } )  ^m  NN0 ) F  =  ( w  e.  CC  |->  sum_ j  e.  ( 0 ... n ) ( ( a `  j
)  x.  ( w ^ j ) ) )  ->  G  e.  (Poly `  S ) ) )
744, 73mpd 13 1  |-  ( ph  ->  G  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712    = wceq 1375    e. wcel 2180   A.wral 2488   E.wrex 2489   _Vcvv 2779    u. cun 3175    C_ wss 3177   {csn 3646    |-> cmpt 4124    o. ccom 4700   -->wf 5290   ` cfv 5294  (class class class)co 5974    ^m cmap 6765   CCcc 7965   0cc0 7967    x. cmul 7972   NN0cn0 9337   ...cfz 10172   ^cexp 10727   *ccj 11316   sum_csu 11830  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ply 15369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator