| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plycj | Unicode version | ||
| Description: The double conjugation of
a polynomial is a polynomial. (The single
conjugation is not because our definition of polynomial includes only
holomorphic functions, i.e. no dependence on |
| Ref | Expression |
|---|---|
| plycj.2 |
|
| plycj.3 |
|
| plycj.4 |
|
| Ref | Expression |
|---|---|
| plycj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plycj.4 |
. . . 4
| |
| 2 | elply 15373 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | 3 | simprd 114 |
. 2
|
| 5 | simplrl 535 |
. . . . . . 7
| |
| 6 | plycj.2 |
. . . . . . 7
| |
| 7 | simplrr 536 |
. . . . . . . 8
| |
| 8 | cnex 8091 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . 12
|
| 10 | 3 | simpld 112 |
. . . . . . . . . . . 12
|
| 11 | 9, 10 | ssexd 4203 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2antrr 488 |
. . . . . . . . . 10
|
| 13 | c0ex 8108 |
. . . . . . . . . . 11
| |
| 14 | 13 | snex 4248 |
. . . . . . . . . 10
|
| 15 | unexg 4511 |
. . . . . . . . . 10
| |
| 16 | 12, 14, 15 | sylancl 413 |
. . . . . . . . 9
|
| 17 | nn0ex 9343 |
. . . . . . . . . 10
| |
| 18 | 17 | a1i 9 |
. . . . . . . . 9
|
| 19 | 16, 18 | elmapd 6779 |
. . . . . . . 8
|
| 20 | 7, 19 | mpbid 147 |
. . . . . . 7
|
| 21 | simpr 110 |
. . . . . . . 8
| |
| 22 | oveq1 5981 |
. . . . . . . . . . . 12
| |
| 23 | 22 | oveq2d 5990 |
. . . . . . . . . . 11
|
| 24 | 23 | sumeq2sdv 11847 |
. . . . . . . . . 10
|
| 25 | 24 | cbvmptv 4159 |
. . . . . . . . 9
|
| 26 | fveq2 5603 |
. . . . . . . . . . . 12
| |
| 27 | oveq2 5982 |
. . . . . . . . . . . 12
| |
| 28 | 26, 27 | oveq12d 5992 |
. . . . . . . . . . 11
|
| 29 | 28 | cbvsumv 11838 |
. . . . . . . . . 10
|
| 30 | 29 | mpteq2i 4150 |
. . . . . . . . 9
|
| 31 | 25, 30 | eqtri 2230 |
. . . . . . . 8
|
| 32 | 21, 31 | eqtrdi 2258 |
. . . . . . 7
|
| 33 | 1 | ad2antrr 488 |
. . . . . . 7
|
| 34 | 5, 6, 20, 32, 33 | plycjlemc 15399 |
. . . . . 6
|
| 35 | 0cn 8106 |
. . . . . . . . . 10
| |
| 36 | snssi 3791 |
. . . . . . . . . 10
| |
| 37 | 35, 36 | mp1i 10 |
. . . . . . . . 9
|
| 38 | 10, 37 | unssd 3360 |
. . . . . . . 8
|
| 39 | 38 | ad2antrr 488 |
. . . . . . 7
|
| 40 | 20 | adantr 276 |
. . . . . . . . 9
|
| 41 | elfznn0 10278 |
. . . . . . . . . 10
| |
| 42 | 41 | adantl 277 |
. . . . . . . . 9
|
| 43 | fvco3 5678 |
. . . . . . . . 9
| |
| 44 | 40, 42, 43 | syl2anc 411 |
. . . . . . . 8
|
| 45 | 40, 42 | ffvelcdmd 5744 |
. . . . . . . . 9
|
| 46 | plycj.3 |
. . . . . . . . . . . . . 14
| |
| 47 | 46 | ralrimiva 2583 |
. . . . . . . . . . . . 13
|
| 48 | fveq2 5603 |
. . . . . . . . . . . . . . 15
| |
| 49 | 48 | eleq1d 2278 |
. . . . . . . . . . . . . 14
|
| 50 | 49 | rspccv 2884 |
. . . . . . . . . . . . 13
|
| 51 | 47, 50 | syl 14 |
. . . . . . . . . . . 12
|
| 52 | elsni 3664 |
. . . . . . . . . . . . . . . 16
| |
| 53 | 52 | fveq2d 5607 |
. . . . . . . . . . . . . . 15
|
| 54 | cj0 11378 |
. . . . . . . . . . . . . . 15
| |
| 55 | 53, 54 | eqtrdi 2258 |
. . . . . . . . . . . . . 14
|
| 56 | 55, 35 | eqeltrdi 2300 |
. . . . . . . . . . . . . . 15
|
| 57 | elsng 3661 |
. . . . . . . . . . . . . . 15
| |
| 58 | 56, 57 | syl 14 |
. . . . . . . . . . . . . 14
|
| 59 | 55, 58 | mpbird 167 |
. . . . . . . . . . . . 13
|
| 60 | 59 | a1i 9 |
. . . . . . . . . . . 12
|
| 61 | 51, 60 | orim12d 790 |
. . . . . . . . . . 11
|
| 62 | elun 3325 |
. . . . . . . . . . 11
| |
| 63 | elun 3325 |
. . . . . . . . . . 11
| |
| 64 | 61, 62, 63 | 3imtr4g 205 |
. . . . . . . . . 10
|
| 65 | 64 | ad3antrrr 492 |
. . . . . . . . 9
|
| 66 | 45, 65 | mpd 13 |
. . . . . . . 8
|
| 67 | 44, 66 | eqeltrd 2286 |
. . . . . . 7
|
| 68 | 39, 5, 67 | elplyd 15380 |
. . . . . 6
|
| 69 | 34, 68 | eqeltrd 2286 |
. . . . 5
|
| 70 | plyun0 15375 |
. . . . 5
| |
| 71 | 69, 70 | eleqtrdi 2302 |
. . . 4
|
| 72 | 71 | ex 115 |
. . 3
|
| 73 | 72 | rexlimdvva 2636 |
. 2
|
| 74 | 4, 73 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-map 6767 df-en 6858 df-dom 6859 df-fin 6860 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-ihash 10965 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ply 15369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |