| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > plyun0 | GIF version | ||
| Description: The set of polynomials is unaffected by the addition of zero. (This is built into the definition because all higher powers of a polynomial are effectively zero, so we require that the coefficient field contain zero to simplify some of our closure theorems.) (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyun0 | ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8146 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 2 | snssi 3812 | . . . . . . 7 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ {0} ⊆ ℂ |
| 4 | 3 | biantru 302 | . . . . 5 ⊢ (𝑆 ⊆ ℂ ↔ (𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ)) |
| 5 | unss 3378 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ {0} ⊆ ℂ) ↔ (𝑆 ∪ {0}) ⊆ ℂ) | |
| 6 | 4, 5 | bitr2i 185 | . . . 4 ⊢ ((𝑆 ∪ {0}) ⊆ ℂ ↔ 𝑆 ⊆ ℂ) |
| 7 | unass 3361 | . . . . . . . 8 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ ({0} ∪ {0})) | |
| 8 | unidm 3347 | . . . . . . . . 9 ⊢ ({0} ∪ {0}) = {0} | |
| 9 | 8 | uneq2i 3355 | . . . . . . . 8 ⊢ (𝑆 ∪ ({0} ∪ {0})) = (𝑆 ∪ {0}) |
| 10 | 7, 9 | eqtri 2250 | . . . . . . 7 ⊢ ((𝑆 ∪ {0}) ∪ {0}) = (𝑆 ∪ {0}) |
| 11 | 10 | oveq1i 6017 | . . . . . 6 ⊢ (((𝑆 ∪ {0}) ∪ {0}) ↑𝑚 ℕ0) = ((𝑆 ∪ {0}) ↑𝑚 ℕ0) |
| 12 | 11 | rexeqi 2733 | . . . . 5 ⊢ (∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 13 | 12 | rexbii 2537 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 14 | 6, 13 | anbi12i 460 | . . 3 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
| 15 | elply 15416 | . . 3 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ ((𝑆 ∪ {0}) ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ (((𝑆 ∪ {0}) ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 16 | elply 15416 | . . 3 ⊢ (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 17 | 14, 15, 16 | 3bitr4i 212 | . 2 ⊢ (𝑓 ∈ (Poly‘(𝑆 ∪ {0})) ↔ 𝑓 ∈ (Poly‘𝑆)) |
| 18 | 17 | eqriv 2226 | 1 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ∪ cun 3195 ⊆ wss 3197 {csn 3666 ↦ cmpt 4145 ‘cfv 5318 (class class class)co 6007 ↑𝑚 cmap 6803 ℂcc 8005 0cc0 8007 · cmul 8012 ℕ0cn0 9377 ...cfz 10212 ↑cexp 10768 Σcsu 11872 Polycply 15410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-i2m1 8112 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 df-inn 9119 df-n0 9378 df-ply 15412 |
| This theorem is referenced by: elplyd 15423 ply1term 15425 plyaddlem 15431 plymullem 15432 plycolemc 15440 plycj 15443 |
| Copyright terms: Public domain | W3C validator |