| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elplyd | Unicode version | ||
| Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| elplyd.1 |
|
| elplyd.2 |
|
| elplyd.3 |
|
| Ref | Expression |
|---|---|
| elplyd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffvmpt1 5614 |
. . . . . . 7
| |
| 2 | nfcv 2352 |
. . . . . . 7
| |
| 3 | nfcv 2352 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | nfov 6004 |
. . . . . 6
|
| 5 | nfcv 2352 |
. . . . . 6
| |
| 6 | fveq2 5603 |
. . . . . . 7
| |
| 7 | oveq2 5982 |
. . . . . . 7
| |
| 8 | 6, 7 | oveq12d 5992 |
. . . . . 6
|
| 9 | 4, 5, 8 | cbvsumi 11839 |
. . . . 5
|
| 10 | elfznn0 10278 |
. . . . . . . . 9
| |
| 11 | iftrue 3587 |
. . . . . . . . . . 11
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . 10
|
| 13 | elplyd.3 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | eqeltrd 2286 |
. . . . . . . . 9
|
| 15 | eqid 2209 |
. . . . . . . . . 10
| |
| 16 | 15 | fvmpt2 5691 |
. . . . . . . . 9
|
| 17 | 10, 14, 16 | syl2an2 596 |
. . . . . . . 8
|
| 18 | 17, 12 | eqtrd 2242 |
. . . . . . 7
|
| 19 | 18 | oveq1d 5989 |
. . . . . 6
|
| 20 | 19 | sumeq2dv 11845 |
. . . . 5
|
| 21 | 9, 20 | eqtrid 2254 |
. . . 4
|
| 22 | 21 | mpteq2dv 4154 |
. . 3
|
| 23 | elplyd.1 |
. . . . 5
| |
| 24 | 0cnd 8107 |
. . . . . 6
| |
| 25 | 24 | snssd 3792 |
. . . . 5
|
| 26 | 23, 25 | unssd 3360 |
. . . 4
|
| 27 | elplyd.2 |
. . . 4
| |
| 28 | elun1 3351 |
. . . . . . . 8
| |
| 29 | 13, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantlr 477 |
. . . . . 6
|
| 31 | ssun2 3348 |
. . . . . . . 8
| |
| 32 | c0ex 8108 |
. . . . . . . . 9
| |
| 33 | 32 | snss 3782 |
. . . . . . . 8
|
| 34 | 31, 33 | mpbir 146 |
. . . . . . 7
|
| 35 | 34 | a1i 9 |
. . . . . 6
|
| 36 | nn0z 9434 |
. . . . . . . 8
| |
| 37 | 36 | adantl 277 |
. . . . . . 7
|
| 38 | 0zd 9426 |
. . . . . . 7
| |
| 39 | 27 | nn0zd 9535 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | fzdcel 10204 |
. . . . . . 7
| |
| 42 | 37, 38, 40, 41 | syl3anc 1252 |
. . . . . 6
|
| 43 | 30, 35, 42 | ifcldadc 3612 |
. . . . 5
|
| 44 | 43 | fmpttd 5763 |
. . . 4
|
| 45 | elplyr 15379 |
. . . 4
| |
| 46 | 26, 27, 44, 45 | syl3anc 1252 |
. . 3
|
| 47 | 22, 46 | eqeltrrd 2287 |
. 2
|
| 48 | plyun0 15375 |
. 2
| |
| 49 | 47, 48 | eleqtrdi 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-map 6767 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-seqfrec 10637 df-sumdc 11831 df-ply 15369 |
| This theorem is referenced by: ply1term 15382 plyaddlem 15388 plymullem 15389 plycj 15400 dvply2g 15405 |
| Copyright terms: Public domain | W3C validator |