| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elplyd | Unicode version | ||
| Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| elplyd.1 |
|
| elplyd.2 |
|
| elplyd.3 |
|
| Ref | Expression |
|---|---|
| elplyd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffvmpt1 5569 |
. . . . . . 7
| |
| 2 | nfcv 2339 |
. . . . . . 7
| |
| 3 | nfcv 2339 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | nfov 5952 |
. . . . . 6
|
| 5 | nfcv 2339 |
. . . . . 6
| |
| 6 | fveq2 5558 |
. . . . . . 7
| |
| 7 | oveq2 5930 |
. . . . . . 7
| |
| 8 | 6, 7 | oveq12d 5940 |
. . . . . 6
|
| 9 | 4, 5, 8 | cbvsumi 11527 |
. . . . 5
|
| 10 | elfznn0 10189 |
. . . . . . . . 9
| |
| 11 | iftrue 3566 |
. . . . . . . . . . 11
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . 10
|
| 13 | elplyd.3 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | eqeltrd 2273 |
. . . . . . . . 9
|
| 15 | eqid 2196 |
. . . . . . . . . 10
| |
| 16 | 15 | fvmpt2 5645 |
. . . . . . . . 9
|
| 17 | 10, 14, 16 | syl2an2 594 |
. . . . . . . 8
|
| 18 | 17, 12 | eqtrd 2229 |
. . . . . . 7
|
| 19 | 18 | oveq1d 5937 |
. . . . . 6
|
| 20 | 19 | sumeq2dv 11533 |
. . . . 5
|
| 21 | 9, 20 | eqtrid 2241 |
. . . 4
|
| 22 | 21 | mpteq2dv 4124 |
. . 3
|
| 23 | elplyd.1 |
. . . . 5
| |
| 24 | 0cnd 8019 |
. . . . . 6
| |
| 25 | 24 | snssd 3767 |
. . . . 5
|
| 26 | 23, 25 | unssd 3339 |
. . . 4
|
| 27 | elplyd.2 |
. . . 4
| |
| 28 | elun1 3330 |
. . . . . . . 8
| |
| 29 | 13, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantlr 477 |
. . . . . 6
|
| 31 | ssun2 3327 |
. . . . . . . 8
| |
| 32 | c0ex 8020 |
. . . . . . . . 9
| |
| 33 | 32 | snss 3757 |
. . . . . . . 8
|
| 34 | 31, 33 | mpbir 146 |
. . . . . . 7
|
| 35 | 34 | a1i 9 |
. . . . . 6
|
| 36 | nn0z 9346 |
. . . . . . . 8
| |
| 37 | 36 | adantl 277 |
. . . . . . 7
|
| 38 | 0zd 9338 |
. . . . . . 7
| |
| 39 | 27 | nn0zd 9446 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | fzdcel 10115 |
. . . . . . 7
| |
| 42 | 37, 38, 40, 41 | syl3anc 1249 |
. . . . . 6
|
| 43 | 30, 35, 42 | ifcldadc 3590 |
. . . . 5
|
| 44 | 43 | fmpttd 5717 |
. . . 4
|
| 45 | elplyr 14976 |
. . . 4
| |
| 46 | 26, 27, 44, 45 | syl3anc 1249 |
. . 3
|
| 47 | 22, 46 | eqeltrrd 2274 |
. 2
|
| 48 | plyun0 14972 |
. 2
| |
| 49 | 47, 48 | eleqtrdi 2289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-sumdc 11519 df-ply 14966 |
| This theorem is referenced by: ply1term 14979 plyaddlem 14985 plymullem 14986 plycj 14997 dvply2g 15002 |
| Copyright terms: Public domain | W3C validator |