| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elplyd | Unicode version | ||
| Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| elplyd.1 |
|
| elplyd.2 |
|
| elplyd.3 |
|
| Ref | Expression |
|---|---|
| elplyd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nffvmpt1 5594 |
. . . . . . 7
| |
| 2 | nfcv 2349 |
. . . . . . 7
| |
| 3 | nfcv 2349 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | nfov 5981 |
. . . . . 6
|
| 5 | nfcv 2349 |
. . . . . 6
| |
| 6 | fveq2 5583 |
. . . . . . 7
| |
| 7 | oveq2 5959 |
. . . . . . 7
| |
| 8 | 6, 7 | oveq12d 5969 |
. . . . . 6
|
| 9 | 4, 5, 8 | cbvsumi 11717 |
. . . . 5
|
| 10 | elfznn0 10243 |
. . . . . . . . 9
| |
| 11 | iftrue 3577 |
. . . . . . . . . . 11
| |
| 12 | 11 | adantl 277 |
. . . . . . . . . 10
|
| 13 | elplyd.3 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | eqeltrd 2283 |
. . . . . . . . 9
|
| 15 | eqid 2206 |
. . . . . . . . . 10
| |
| 16 | 15 | fvmpt2 5670 |
. . . . . . . . 9
|
| 17 | 10, 14, 16 | syl2an2 594 |
. . . . . . . 8
|
| 18 | 17, 12 | eqtrd 2239 |
. . . . . . 7
|
| 19 | 18 | oveq1d 5966 |
. . . . . 6
|
| 20 | 19 | sumeq2dv 11723 |
. . . . 5
|
| 21 | 9, 20 | eqtrid 2251 |
. . . 4
|
| 22 | 21 | mpteq2dv 4139 |
. . 3
|
| 23 | elplyd.1 |
. . . . 5
| |
| 24 | 0cnd 8072 |
. . . . . 6
| |
| 25 | 24 | snssd 3780 |
. . . . 5
|
| 26 | 23, 25 | unssd 3350 |
. . . 4
|
| 27 | elplyd.2 |
. . . 4
| |
| 28 | elun1 3341 |
. . . . . . . 8
| |
| 29 | 13, 28 | syl 14 |
. . . . . . 7
|
| 30 | 29 | adantlr 477 |
. . . . . 6
|
| 31 | ssun2 3338 |
. . . . . . . 8
| |
| 32 | c0ex 8073 |
. . . . . . . . 9
| |
| 33 | 32 | snss 3770 |
. . . . . . . 8
|
| 34 | 31, 33 | mpbir 146 |
. . . . . . 7
|
| 35 | 34 | a1i 9 |
. . . . . 6
|
| 36 | nn0z 9399 |
. . . . . . . 8
| |
| 37 | 36 | adantl 277 |
. . . . . . 7
|
| 38 | 0zd 9391 |
. . . . . . 7
| |
| 39 | 27 | nn0zd 9500 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | fzdcel 10169 |
. . . . . . 7
| |
| 42 | 37, 38, 40, 41 | syl3anc 1250 |
. . . . . 6
|
| 43 | 30, 35, 42 | ifcldadc 3601 |
. . . . 5
|
| 44 | 43 | fmpttd 5742 |
. . . 4
|
| 45 | elplyr 15256 |
. . . 4
| |
| 46 | 26, 27, 44, 45 | syl3anc 1250 |
. . 3
|
| 47 | 22, 46 | eqeltrrd 2284 |
. 2
|
| 48 | plyun0 15252 |
. 2
| |
| 49 | 47, 48 | eleqtrdi 2299 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-map 6744 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-seqfrec 10600 df-sumdc 11709 df-ply 15246 |
| This theorem is referenced by: ply1term 15259 plyaddlem 15265 plymullem 15266 plycj 15277 dvply2g 15282 |
| Copyright terms: Public domain | W3C validator |