ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elplyd Unicode version

Theorem elplyd 15061
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1  |-  ( ph  ->  S  C_  CC )
elplyd.2  |-  ( ph  ->  N  e.  NN0 )
elplyd.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  S )
Assertion
Ref Expression
elplyd  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Distinct variable groups:    z, A    z,
k, N    ph, k, z    S, k, z
Allowed substitution hint:    A( k)

Proof of Theorem elplyd
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 5572 . . . . . . 7  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )
2 nfcv 2339 . . . . . . 7  |-  F/_ k  x.
3 nfcv 2339 . . . . . . 7  |-  F/_ k
( z ^ j
)
41, 2, 3nfov 5955 . . . . . 6  |-  F/_ k
( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )
5 nfcv 2339 . . . . . 6  |-  F/_ j
( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
6 fveq2 5561 . . . . . . 7  |-  ( j  =  k  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j
)  =  ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k ) )
7 oveq2 5933 . . . . . . 7  |-  ( j  =  k  ->  (
z ^ j )  =  ( z ^
k ) )
86, 7oveq12d 5943 . . . . . 6  |-  ( j  =  k  ->  (
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) )  =  ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) )
94, 5, 8cbvsumi 11544 . . . . 5  |-  sum_ j  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
10 elfznn0 10206 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
11 iftrue 3567 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  =  A )
1211adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  =  A )
13 elplyd.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  S )
1412, 13eqeltrd 2273 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  e.  S )
15 eqid 2196 . . . . . . . . . 10  |-  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1615fvmpt2 5648 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  e.  S )  ->  ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1710, 14, 16syl2an2 594 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k
)  =  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1817, 12eqtrd 2229 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k
)  =  A )
1918oveq1d 5940 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ k ) ) )
2019sumeq2dv 11550 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
219, 20eqtrid 2241 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
2221mpteq2dv 4125 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) ) )
23 elplyd.1 . . . . 5  |-  ( ph  ->  S  C_  CC )
24 0cnd 8036 . . . . . 6  |-  ( ph  ->  0  e.  CC )
2524snssd 3768 . . . . 5  |-  ( ph  ->  { 0 }  C_  CC )
2623, 25unssd 3340 . . . 4  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
27 elplyd.2 . . . 4  |-  ( ph  ->  N  e.  NN0 )
28 elun1 3331 . . . . . . . 8  |-  ( A  e.  S  ->  A  e.  ( S  u.  {
0 } ) )
2913, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  ( S  u.  {
0 } ) )
3029adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  ( S  u.  {
0 } ) )
31 ssun2 3328 . . . . . . . 8  |-  { 0 }  C_  ( S  u.  { 0 } )
32 c0ex 8037 . . . . . . . . 9  |-  0  e.  _V
3332snss 3758 . . . . . . . 8  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
3431, 33mpbir 146 . . . . . . 7  |-  0  e.  ( S  u.  {
0 } )
3534a1i 9 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  ( 0 ... N ) )  ->  0  e.  ( S  u.  { 0 } ) )
36 nn0z 9363 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  ZZ )
3736adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
38 0zd 9355 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
3927nn0zd 9463 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
4039adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  N  e.  ZZ )
41 fzdcel 10132 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  k  e.  (
0 ... N ) )
4237, 38, 40, 41syl3anc 1249 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  -> DECID  k  e.  (
0 ... N ) )
4330, 35, 42ifcldadc 3591 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  ( 0 ... N ) ,  A ,  0 )  e.  ( S  u.  { 0 } ) )
4443fmpttd 5720 . . . 4  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )
45 elplyr 15060 . . . 4  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  N  e.  NN0  /\  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )  -> 
( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
4626, 27, 44, 45syl3anc 1249 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
4722, 46eqeltrrd 2274 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
48 plyun0 15056 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
4947, 48eleqtrdi 2289 1  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167    u. cun 3155    C_ wss 3157   ifcif 3562   {csn 3623    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896    x. cmul 7901   NN0cn0 9266   ZZcz 9343   ...cfz 10100   ^cexp 10647   sum_csu 11535  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557  df-sumdc 11536  df-ply 15050
This theorem is referenced by:  ply1term  15063  plyaddlem  15069  plymullem  15070  plycj  15081  dvply2g  15086
  Copyright terms: Public domain W3C validator