ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elplyd Unicode version

Theorem elplyd 14887
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1  |-  ( ph  ->  S  C_  CC )
elplyd.2  |-  ( ph  ->  N  e.  NN0 )
elplyd.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  S )
Assertion
Ref Expression
elplyd  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Distinct variable groups:    z, A    z,
k, N    ph, k, z    S, k, z
Allowed substitution hint:    A( k)

Proof of Theorem elplyd
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 5565 . . . . . . 7  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )
2 nfcv 2336 . . . . . . 7  |-  F/_ k  x.
3 nfcv 2336 . . . . . . 7  |-  F/_ k
( z ^ j
)
41, 2, 3nfov 5948 . . . . . 6  |-  F/_ k
( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )
5 nfcv 2336 . . . . . 6  |-  F/_ j
( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
6 fveq2 5554 . . . . . . 7  |-  ( j  =  k  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j
)  =  ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k ) )
7 oveq2 5926 . . . . . . 7  |-  ( j  =  k  ->  (
z ^ j )  =  ( z ^
k ) )
86, 7oveq12d 5936 . . . . . 6  |-  ( j  =  k  ->  (
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) )  =  ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) )
94, 5, 8cbvsumi 11505 . . . . 5  |-  sum_ j  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
10 elfznn0 10180 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
11 iftrue 3562 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  =  A )
1211adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  =  A )
13 elplyd.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  S )
1412, 13eqeltrd 2270 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  e.  S )
15 eqid 2193 . . . . . . . . . 10  |-  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1615fvmpt2 5641 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  e.  S )  ->  ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1710, 14, 16syl2an2 594 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k
)  =  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1817, 12eqtrd 2226 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k
)  =  A )
1918oveq1d 5933 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ k ) ) )
2019sumeq2dv 11511 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
219, 20eqtrid 2238 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
2221mpteq2dv 4120 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) ) )
23 elplyd.1 . . . . 5  |-  ( ph  ->  S  C_  CC )
24 0cnd 8012 . . . . . 6  |-  ( ph  ->  0  e.  CC )
2524snssd 3763 . . . . 5  |-  ( ph  ->  { 0 }  C_  CC )
2623, 25unssd 3335 . . . 4  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
27 elplyd.2 . . . 4  |-  ( ph  ->  N  e.  NN0 )
28 elun1 3326 . . . . . . . 8  |-  ( A  e.  S  ->  A  e.  ( S  u.  {
0 } ) )
2913, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  ( S  u.  {
0 } ) )
3029adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  ( S  u.  {
0 } ) )
31 ssun2 3323 . . . . . . . 8  |-  { 0 }  C_  ( S  u.  { 0 } )
32 c0ex 8013 . . . . . . . . 9  |-  0  e.  _V
3332snss 3753 . . . . . . . 8  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
3431, 33mpbir 146 . . . . . . 7  |-  0  e.  ( S  u.  {
0 } )
3534a1i 9 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  ( 0 ... N ) )  ->  0  e.  ( S  u.  { 0 } ) )
36 nn0z 9337 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  ZZ )
3736adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
38 0zd 9329 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
3927nn0zd 9437 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
4039adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  N  e.  ZZ )
41 fzdcel 10106 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  k  e.  (
0 ... N ) )
4237, 38, 40, 41syl3anc 1249 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  -> DECID  k  e.  (
0 ... N ) )
4330, 35, 42ifcldadc 3586 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  ( 0 ... N ) ,  A ,  0 )  e.  ( S  u.  { 0 } ) )
4443fmpttd 5713 . . . 4  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )
45 elplyr 14886 . . . 4  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  N  e.  NN0  /\  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )  -> 
( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
4626, 27, 44, 45syl3anc 1249 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
4722, 46eqeltrrd 2271 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
48 plyun0 14882 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
4947, 48eleqtrdi 2286 1  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2164    u. cun 3151    C_ wss 3153   ifcif 3557   {csn 3618    |-> cmpt 4090   -->wf 5250   ` cfv 5254  (class class class)co 5918   CCcc 7870   0cc0 7872    x. cmul 7877   NN0cn0 9240   ZZcz 9317   ...cfz 10074   ^cexp 10609   sum_csu 11496  Polycply 14874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-sumdc 11497  df-ply 14876
This theorem is referenced by:  ply1term  14889  plyaddlem  14895  plymullem  14896
  Copyright terms: Public domain W3C validator