ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elplyd Unicode version

Theorem elplyd 15423
Description: Sufficient condition for elementhood in the set of polynomials. (Contributed by Mario Carneiro, 17-Jul-2014.)
Hypotheses
Ref Expression
elplyd.1  |-  ( ph  ->  S  C_  CC )
elplyd.2  |-  ( ph  ->  N  e.  NN0 )
elplyd.3  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  S )
Assertion
Ref Expression
elplyd  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Distinct variable groups:    z, A    z,
k, N    ph, k, z    S, k, z
Allowed substitution hint:    A( k)

Proof of Theorem elplyd
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 5640 . . . . . . 7  |-  F/_ k
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )
2 nfcv 2372 . . . . . . 7  |-  F/_ k  x.
3 nfcv 2372 . . . . . . 7  |-  F/_ k
( z ^ j
)
41, 2, 3nfov 6037 . . . . . 6  |-  F/_ k
( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )
5 nfcv 2372 . . . . . 6  |-  F/_ j
( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
6 fveq2 5629 . . . . . . 7  |-  ( j  =  k  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j
)  =  ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k ) )
7 oveq2 6015 . . . . . . 7  |-  ( j  =  k  ->  (
z ^ j )  =  ( z ^
k ) )
86, 7oveq12d 6025 . . . . . 6  |-  ( j  =  k  ->  (
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) )  =  ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) ) )
94, 5, 8cbvsumi 11881 . . . . 5  |-  sum_ j  e.  ( 0 ... N
) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )
10 elfznn0 10318 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
11 iftrue 3607 . . . . . . . . . . 11  |-  ( k  e.  ( 0 ... N )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  =  A )
1211adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  =  A )
13 elplyd.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  S )
1412, 13eqeltrd 2306 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  e.  S )
15 eqid 2229 . . . . . . . . . 10  |-  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )  =  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1615fvmpt2 5720 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  if ( k  e.  ( 0 ... N ) ,  A ,  0 )  e.  S )  ->  ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  =  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1710, 14, 16syl2an2 596 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k
)  =  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) )
1817, 12eqtrd 2262 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k
)  =  A )
1918oveq1d 6022 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 k )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ k ) ) )
2019sumeq2dv 11887 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  k )  x.  ( z ^
k ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
219, 20eqtrid 2274 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 0 ... N ) ( ( ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `  j )  x.  ( z ^
j ) )  = 
sum_ k  e.  ( 0 ... N ) ( A  x.  (
z ^ k ) ) )
2221mpteq2dv 4175 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) ) )
23 elplyd.1 . . . . 5  |-  ( ph  ->  S  C_  CC )
24 0cnd 8147 . . . . . 6  |-  ( ph  ->  0  e.  CC )
2524snssd 3813 . . . . 5  |-  ( ph  ->  { 0 }  C_  CC )
2623, 25unssd 3380 . . . 4  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
27 elplyd.2 . . . 4  |-  ( ph  ->  N  e.  NN0 )
28 elun1 3371 . . . . . . . 8  |-  ( A  e.  S  ->  A  e.  ( S  u.  {
0 } ) )
2913, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  A  e.  ( S  u.  {
0 } ) )
3029adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  e.  ( 0 ... N
) )  ->  A  e.  ( S  u.  {
0 } ) )
31 ssun2 3368 . . . . . . . 8  |-  { 0 }  C_  ( S  u.  { 0 } )
32 c0ex 8148 . . . . . . . . 9  |-  0  e.  _V
3332snss 3803 . . . . . . . 8  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
3431, 33mpbir 146 . . . . . . 7  |-  0  e.  ( S  u.  {
0 } )
3534a1i 9 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  ( 0 ... N ) )  ->  0  e.  ( S  u.  { 0 } ) )
36 nn0z 9474 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  ZZ )
3736adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
38 0zd 9466 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
3927nn0zd 9575 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
4039adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  N  e.  ZZ )
41 fzdcel 10244 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  k  e.  (
0 ... N ) )
4237, 38, 40, 41syl3anc 1271 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  -> DECID  k  e.  (
0 ... N ) )
4330, 35, 42ifcldadc 3632 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  ( 0 ... N ) ,  A ,  0 )  e.  ( S  u.  { 0 } ) )
4443fmpttd 5792 . . . 4  |-  ( ph  ->  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )
45 elplyr 15422 . . . 4  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  N  e.  NN0  /\  ( k  e.  NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) : NN0 --> ( S  u.  { 0 } ) )  -> 
( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
4626, 27, 44, 45syl3anc 1271 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( k  e. 
NN0  |->  if ( k  e.  ( 0 ... N ) ,  A ,  0 ) ) `
 j )  x.  ( z ^ j
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
4722, 46eqeltrrd 2307 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
48 plyun0 15418 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
4947, 48eleqtrdi 2322 1  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( A  x.  ( z ^ k ) ) )  e.  (Poly `  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   ifcif 3602   {csn 3666    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6007   CCcc 8005   0cc0 8007    x. cmul 8012   NN0cn0 9377   ZZcz 9454   ...cfz 10212   ^cexp 10768   sum_csu 11872  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-seqfrec 10678  df-sumdc 11873  df-ply 15412
This theorem is referenced by:  ply1term  15425  plyaddlem  15431  plymullem  15432  plycj  15443  dvply2g  15448
  Copyright terms: Public domain W3C validator