Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > q2txmodxeq0 | GIF version |
Description: Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.) |
Ref | Expression |
---|---|
q2txmodxeq0 | ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cnd 8944 | . . . 4 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 2 ∈ ℂ) | |
2 | qcn 9586 | . . . . 5 ⊢ (𝑋 ∈ ℚ → 𝑋 ∈ ℂ) | |
3 | 2 | adantr 274 | . . . 4 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 ∈ ℂ) |
4 | qre 9577 | . . . . . 6 ⊢ (𝑋 ∈ ℚ → 𝑋 ∈ ℝ) | |
5 | 4 | adantr 274 | . . . . 5 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 ∈ ℝ) |
6 | simpr 109 | . . . . 5 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 0 < 𝑋) | |
7 | 5, 6 | gt0ap0d 8541 | . . . 4 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 # 0) |
8 | 1, 3, 7 | divcanap4d 8706 | . . 3 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) / 𝑋) = 2) |
9 | 2z 9233 | . . 3 ⊢ 2 ∈ ℤ | |
10 | 8, 9 | eqeltrdi 2261 | . 2 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) / 𝑋) ∈ ℤ) |
11 | zq 9578 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
12 | 9, 11 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ ℚ |
13 | qmulcl 9589 | . . . . 5 ⊢ ((2 ∈ ℚ ∧ 𝑋 ∈ ℚ) → (2 · 𝑋) ∈ ℚ) | |
14 | 12, 13 | mpan 422 | . . . 4 ⊢ (𝑋 ∈ ℚ → (2 · 𝑋) ∈ ℚ) |
15 | 14 | adantr 274 | . . 3 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → (2 · 𝑋) ∈ ℚ) |
16 | simpl 108 | . . 3 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 ∈ ℚ) | |
17 | modq0 10278 | . . 3 ⊢ (((2 · 𝑋) ∈ ℚ ∧ 𝑋 ∈ ℚ ∧ 0 < 𝑋) → (((2 · 𝑋) mod 𝑋) = 0 ↔ ((2 · 𝑋) / 𝑋) ∈ ℤ)) | |
18 | 15, 16, 6, 17 | syl3anc 1233 | . 2 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → (((2 · 𝑋) mod 𝑋) = 0 ↔ ((2 · 𝑋) / 𝑋) ∈ ℤ)) |
19 | 10, 18 | mpbird 166 | 1 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 class class class wbr 3987 (class class class)co 5851 ℂcc 7765 ℝcr 7766 0cc0 7767 · cmul 7772 < clt 7947 / cdiv 8582 2c2 8922 ℤcz 9205 ℚcq 9571 mod cmo 10271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 ax-arch 7886 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-n0 9129 df-z 9206 df-q 9572 df-rp 9604 df-fl 10219 df-mod 10272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |