![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > q2txmodxeq0 | GIF version |
Description: Two times a positive number modulo the number is zero. (Contributed by Jim Kingdon, 25-Oct-2021.) |
Ref | Expression |
---|---|
q2txmodxeq0 | ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cnd 9057 | . . . 4 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 2 ∈ ℂ) | |
2 | qcn 9702 | . . . . 5 ⊢ (𝑋 ∈ ℚ → 𝑋 ∈ ℂ) | |
3 | 2 | adantr 276 | . . . 4 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 ∈ ℂ) |
4 | qre 9693 | . . . . . 6 ⊢ (𝑋 ∈ ℚ → 𝑋 ∈ ℝ) | |
5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 ∈ ℝ) |
6 | simpr 110 | . . . . 5 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 0 < 𝑋) | |
7 | 5, 6 | gt0ap0d 8650 | . . . 4 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 # 0) |
8 | 1, 3, 7 | divcanap4d 8817 | . . 3 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) / 𝑋) = 2) |
9 | 2z 9348 | . . 3 ⊢ 2 ∈ ℤ | |
10 | 8, 9 | eqeltrdi 2284 | . 2 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) / 𝑋) ∈ ℤ) |
11 | zq 9694 | . . . . . 6 ⊢ (2 ∈ ℤ → 2 ∈ ℚ) | |
12 | 9, 11 | ax-mp 5 | . . . . 5 ⊢ 2 ∈ ℚ |
13 | qmulcl 9705 | . . . . 5 ⊢ ((2 ∈ ℚ ∧ 𝑋 ∈ ℚ) → (2 · 𝑋) ∈ ℚ) | |
14 | 12, 13 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ ℚ → (2 · 𝑋) ∈ ℚ) |
15 | 14 | adantr 276 | . . 3 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → (2 · 𝑋) ∈ ℚ) |
16 | simpl 109 | . . 3 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → 𝑋 ∈ ℚ) | |
17 | modq0 10403 | . . 3 ⊢ (((2 · 𝑋) ∈ ℚ ∧ 𝑋 ∈ ℚ ∧ 0 < 𝑋) → (((2 · 𝑋) mod 𝑋) = 0 ↔ ((2 · 𝑋) / 𝑋) ∈ ℤ)) | |
18 | 15, 16, 6, 17 | syl3anc 1249 | . 2 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → (((2 · 𝑋) mod 𝑋) = 0 ↔ ((2 · 𝑋) / 𝑋) ∈ ℤ)) |
19 | 10, 18 | mpbird 167 | 1 ⊢ ((𝑋 ∈ ℚ ∧ 0 < 𝑋) → ((2 · 𝑋) mod 𝑋) = 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 · cmul 7879 < clt 8056 / cdiv 8693 2c2 9035 ℤcz 9320 ℚcq 9687 mod cmo 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-q 9688 df-rp 9723 df-fl 10342 df-mod 10397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |