ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmul2 Unicode version

Theorem qusmul2 14291
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul2.h  |-  Q  =  ( R  /.s  ( R ~QG  I
) )
qusmul2.v  |-  B  =  ( Base `  R
)
qusmul2.p  |-  .x.  =  ( .r `  R )
qusmul2.a  |-  .X.  =  ( .r `  Q )
qusmul2.1  |-  ( ph  ->  R  e.  Ring )
qusmul2.2  |-  ( ph  ->  I  e.  (2Ideal `  R ) )
qusmul2.3  |-  ( ph  ->  X  e.  B )
qusmul2.4  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
qusmul2  |-  ( ph  ->  ( [ X ]
( R ~QG  I )  .X.  [ Y ] ( R ~QG  I ) )  =  [ ( X  .x.  Y ) ] ( R ~QG  I ) )

Proof of Theorem qusmul2
Dummy variables  t  x  y  z  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul2.3 . 2  |-  ( ph  ->  X  e.  B )
2 qusmul2.4 . 2  |-  ( ph  ->  Y  e.  B )
3 qusmul2.h . . . 4  |-  Q  =  ( R  /.s  ( R ~QG  I
) )
43a1i 9 . . 3  |-  ( ph  ->  Q  =  ( R 
/.s  ( R ~QG  I ) ) )
5 qusmul2.v . . . 4  |-  B  =  ( Base `  R
)
65a1i 9 . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
7 qusmul2.1 . . . . 5  |-  ( ph  ->  R  e.  Ring )
8 qusmul2.2 . . . . . 6  |-  ( ph  ->  I  e.  (2Ideal `  R ) )
982idllidld 14268 . . . . 5  |-  ( ph  ->  I  e.  (LIdeal `  R ) )
10 eqid 2205 . . . . . 6  |-  (LIdeal `  R )  =  (LIdeal `  R )
1110lidlsubg 14248 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  (LIdeal `  R )
)  ->  I  e.  (SubGrp `  R ) )
127, 9, 11syl2anc 411 . . . 4  |-  ( ph  ->  I  e.  (SubGrp `  R ) )
13 eqid 2205 . . . . 5  |-  ( R ~QG  I )  =  ( R ~QG  I )
145, 13eqger 13560 . . . 4  |-  ( I  e.  (SubGrp `  R
)  ->  ( R ~QG  I
)  Er  B )
1512, 14syl 14 . . 3  |-  ( ph  ->  ( R ~QG  I )  Er  B
)
16 eqid 2205 . . . . 5  |-  (2Ideal `  R )  =  (2Ideal `  R )
17 qusmul2.p . . . . 5  |-  .x.  =  ( .r `  R )
185, 13, 16, 172idlcpbl 14286 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  (2Ideal `  R )
)  ->  ( (
x ( R ~QG  I ) y  /\  z ( R ~QG  I ) t )  ->  ( x  .x.  z ) ( R ~QG  I ) ( y  .x.  t ) ) )
197, 8, 18syl2anc 411 . . 3  |-  ( ph  ->  ( ( x ( R ~QG  I ) y  /\  z ( R ~QG  I ) t )  ->  (
x  .x.  z )
( R ~QG  I ) ( y 
.x.  t ) ) )
205, 17ringcl 13775 . . . . . 6  |-  ( ( R  e.  Ring  /\  p  e.  B  /\  q  e.  B )  ->  (
p  .x.  q )  e.  B )
21203expb 1207 . . . . 5  |-  ( ( R  e.  Ring  /\  (
p  e.  B  /\  q  e.  B )
)  ->  ( p  .x.  q )  e.  B
)
227, 21sylan 283 . . . 4  |-  ( (
ph  /\  ( p  e.  B  /\  q  e.  B ) )  -> 
( p  .x.  q
)  e.  B )
2322caovclg 6099 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  t  e.  B ) )  -> 
( y  .x.  t
)  e.  B )
24 qusmul2.a . . 3  |-  .X.  =  ( .r `  Q )
254, 6, 15, 7, 19, 23, 17, 24qusmulval 13169 . 2  |-  ( (
ph  /\  X  e.  B  /\  Y  e.  B
)  ->  ( [ X ] ( R ~QG  I ) 
.X.  [ Y ] ( R ~QG  I ) )  =  [ ( X  .x.  Y ) ] ( R ~QG  I ) )
261, 2, 25mpd3an23 1352 1  |-  ( ph  ->  ( [ X ]
( R ~QG  I )  .X.  [ Y ] ( R ~QG  I ) )  =  [ ( X  .x.  Y ) ] ( R ~QG  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944    Er wer 6617   [cec 6618   Basecbs 12832   .rcmulr 12910    /.s cqus 13132  SubGrpcsubg 13503   ~QG cqg 13505   Ringcrg 13758  LIdealclidl 14229  2Idealc2idl 14261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-tpos 6331  df-er 6620  df-ec 6622  df-qs 6626  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-ip 12927  df-0g 13090  df-iimas 13134  df-qus 13135  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-sbg 13337  df-subg 13506  df-eqg 13508  df-cmn 13622  df-abl 13623  df-mgp 13683  df-rng 13695  df-ur 13722  df-ring 13760  df-oppr 13830  df-subrg 13981  df-lmod 14051  df-lssm 14115  df-sra 14197  df-rgmod 14198  df-lidl 14231  df-2idl 14262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator