ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmul2 Unicode version

Theorem qusmul2 14085
Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
Hypotheses
Ref Expression
qusmul2.h  |-  Q  =  ( R  /.s  ( R ~QG  I
) )
qusmul2.v  |-  B  =  ( Base `  R
)
qusmul2.p  |-  .x.  =  ( .r `  R )
qusmul2.a  |-  .X.  =  ( .r `  Q )
qusmul2.1  |-  ( ph  ->  R  e.  Ring )
qusmul2.2  |-  ( ph  ->  I  e.  (2Ideal `  R ) )
qusmul2.3  |-  ( ph  ->  X  e.  B )
qusmul2.4  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
qusmul2  |-  ( ph  ->  ( [ X ]
( R ~QG  I )  .X.  [ Y ] ( R ~QG  I ) )  =  [ ( X  .x.  Y ) ] ( R ~QG  I ) )

Proof of Theorem qusmul2
Dummy variables  t  x  y  z  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmul2.3 . 2  |-  ( ph  ->  X  e.  B )
2 qusmul2.4 . 2  |-  ( ph  ->  Y  e.  B )
3 qusmul2.h . . . 4  |-  Q  =  ( R  /.s  ( R ~QG  I
) )
43a1i 9 . . 3  |-  ( ph  ->  Q  =  ( R 
/.s  ( R ~QG  I ) ) )
5 qusmul2.v . . . 4  |-  B  =  ( Base `  R
)
65a1i 9 . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
7 qusmul2.1 . . . . 5  |-  ( ph  ->  R  e.  Ring )
8 qusmul2.2 . . . . . 6  |-  ( ph  ->  I  e.  (2Ideal `  R ) )
982idllidld 14062 . . . . 5  |-  ( ph  ->  I  e.  (LIdeal `  R ) )
10 eqid 2196 . . . . . 6  |-  (LIdeal `  R )  =  (LIdeal `  R )
1110lidlsubg 14042 . . . . 5  |-  ( ( R  e.  Ring  /\  I  e.  (LIdeal `  R )
)  ->  I  e.  (SubGrp `  R ) )
127, 9, 11syl2anc 411 . . . 4  |-  ( ph  ->  I  e.  (SubGrp `  R ) )
13 eqid 2196 . . . . 5  |-  ( R ~QG  I )  =  ( R ~QG  I )
145, 13eqger 13354 . . . 4  |-  ( I  e.  (SubGrp `  R
)  ->  ( R ~QG  I
)  Er  B )
1512, 14syl 14 . . 3  |-  ( ph  ->  ( R ~QG  I )  Er  B
)
16 eqid 2196 . . . . 5  |-  (2Ideal `  R )  =  (2Ideal `  R )
17 qusmul2.p . . . . 5  |-  .x.  =  ( .r `  R )
185, 13, 16, 172idlcpbl 14080 . . . 4  |-  ( ( R  e.  Ring  /\  I  e.  (2Ideal `  R )
)  ->  ( (
x ( R ~QG  I ) y  /\  z ( R ~QG  I ) t )  ->  ( x  .x.  z ) ( R ~QG  I ) ( y  .x.  t ) ) )
197, 8, 18syl2anc 411 . . 3  |-  ( ph  ->  ( ( x ( R ~QG  I ) y  /\  z ( R ~QG  I ) t )  ->  (
x  .x.  z )
( R ~QG  I ) ( y 
.x.  t ) ) )
205, 17ringcl 13569 . . . . . 6  |-  ( ( R  e.  Ring  /\  p  e.  B  /\  q  e.  B )  ->  (
p  .x.  q )  e.  B )
21203expb 1206 . . . . 5  |-  ( ( R  e.  Ring  /\  (
p  e.  B  /\  q  e.  B )
)  ->  ( p  .x.  q )  e.  B
)
227, 21sylan 283 . . . 4  |-  ( (
ph  /\  ( p  e.  B  /\  q  e.  B ) )  -> 
( p  .x.  q
)  e.  B )
2322caovclg 6076 . . 3  |-  ( (
ph  /\  ( y  e.  B  /\  t  e.  B ) )  -> 
( y  .x.  t
)  e.  B )
24 qusmul2.a . . 3  |-  .X.  =  ( .r `  Q )
254, 6, 15, 7, 19, 23, 17, 24qusmulval 12980 . 2  |-  ( (
ph  /\  X  e.  B  /\  Y  e.  B
)  ->  ( [ X ] ( R ~QG  I ) 
.X.  [ Y ] ( R ~QG  I ) )  =  [ ( X  .x.  Y ) ] ( R ~QG  I ) )
261, 2, 25mpd3an23 1350 1  |-  ( ph  ->  ( [ X ]
( R ~QG  I )  .X.  [ Y ] ( R ~QG  I ) )  =  [ ( X  .x.  Y ) ] ( R ~QG  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922    Er wer 6589   [cec 6590   Basecbs 12678   .rcmulr 12756    /.s cqus 12943  SubGrpcsubg 13297   ~QG cqg 13299   Ringcrg 13552  LIdealclidl 14023  2Idealc2idl 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300  df-eqg 13302  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-ur 13516  df-ring 13554  df-oppr 13624  df-subrg 13775  df-lmod 13845  df-lssm 13909  df-sra 13991  df-rgmod 13992  df-lidl 14025  df-2idl 14056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator