ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmulrng Unicode version

Theorem qusmulrng 14236
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14237. Similar to qusmul2 14233. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
Hypotheses
Ref Expression
qusmulrng.e  |-  .~  =  ( R ~QG  S )
qusmulrng.h  |-  H  =  ( R  /.s  .~  )
qusmulrng.b  |-  B  =  ( Base `  R
)
qusmulrng.p  |-  .x.  =  ( .r `  R )
qusmulrng.a  |-  .xb  =  ( .r `  H )
Assertion
Ref Expression
qusmulrng  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )

Proof of Theorem qusmulrng
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmulrng.h . . . 4  |-  H  =  ( R  /.s  .~  )
21a1i 9 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  H  =  ( R  /.s  .~  ) )
3 qusmulrng.b . . . 4  |-  B  =  ( Base `  R
)
43a1i 9 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  B  =  ( Base `  R ) )
5 qusmulrng.e . . . . 5  |-  .~  =  ( R ~QG  S )
63, 5eqger 13502 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  .~  Er  B
)
763ad2ant3 1022 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  .~  Er  B )
8 simp1 999 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  R  e. Rng )
9 eqid 2204 . . . 4  |-  (2Ideal `  R )  =  (2Ideal `  R )
10 qusmulrng.p . . . 4  |-  .x.  =  ( .r `  R )
113, 5, 9, 102idlcpblrng 14227 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  -> 
( ( a  .~  b  /\  c  .~  d
)  ->  ( a  .x.  c )  .~  (
b  .x.  d )
) )
128anim1i 340 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( R  e. Rng  /\  ( b  e.  B  /\  d  e.  B
) ) )
13 3anass 984 . . . . 5  |-  ( ( R  e. Rng  /\  b  e.  B  /\  d  e.  B )  <->  ( R  e. Rng  /\  ( b  e.  B  /\  d  e.  B ) ) )
1412, 13sylibr 134 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( R  e. Rng  /\  b  e.  B  /\  d  e.  B )
)
153, 10rngcl 13648 . . . 4  |-  ( ( R  e. Rng  /\  b  e.  B  /\  d  e.  B )  ->  (
b  .x.  d )  e.  B )
1614, 15syl 14 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( b  .x.  d
)  e.  B )
17 qusmulrng.a . . 3  |-  .xb  =  ( .r `  H )
182, 4, 7, 8, 11, 16, 10, 17qusmulval 13111 . 2  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
19183expb 1206 1  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943    Er wer 6616   [cec 6617   Basecbs 12774   .rcmulr 12852    /.s cqus 13074  SubGrpcsubg 13445   ~QG cqg 13447  Rngcrng 13636  2Idealc2idl 14203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-tpos 6330  df-er 6619  df-ec 6621  df-qs 6625  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-sca 12867  df-vsca 12868  df-ip 12869  df-0g 13032  df-iimas 13076  df-qus 13077  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-sbg 13279  df-subg 13448  df-eqg 13450  df-cmn 13564  df-abl 13565  df-mgp 13625  df-rng 13637  df-oppr 13772  df-lssm 14057  df-sra 14139  df-rgmod 14140  df-lidl 14173  df-2idl 14204
This theorem is referenced by:  quscrng  14237
  Copyright terms: Public domain W3C validator