ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusmulrng Unicode version

Theorem qusmulrng 14369
Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14370. Similar to qusmul2 14366. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
Hypotheses
Ref Expression
qusmulrng.e  |-  .~  =  ( R ~QG  S )
qusmulrng.h  |-  H  =  ( R  /.s  .~  )
qusmulrng.b  |-  B  =  ( Base `  R
)
qusmulrng.p  |-  .x.  =  ( .r `  R )
qusmulrng.a  |-  .xb  =  ( .r `  H )
Assertion
Ref Expression
qusmulrng  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )

Proof of Theorem qusmulrng
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusmulrng.h . . . 4  |-  H  =  ( R  /.s  .~  )
21a1i 9 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  H  =  ( R  /.s  .~  ) )
3 qusmulrng.b . . . 4  |-  B  =  ( Base `  R
)
43a1i 9 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  B  =  ( Base `  R ) )
5 qusmulrng.e . . . . 5  |-  .~  =  ( R ~QG  S )
63, 5eqger 13635 . . . 4  |-  ( S  e.  (SubGrp `  R
)  ->  .~  Er  B
)
763ad2ant3 1023 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  .~  Er  B )
8 simp1 1000 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  ->  R  e. Rng )
9 eqid 2206 . . . 4  |-  (2Ideal `  R )  =  (2Ideal `  R )
10 qusmulrng.p . . . 4  |-  .x.  =  ( .r `  R )
113, 5, 9, 102idlcpblrng 14360 . . 3  |-  ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  -> 
( ( a  .~  b  /\  c  .~  d
)  ->  ( a  .x.  c )  .~  (
b  .x.  d )
) )
128anim1i 340 . . . . 5  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( R  e. Rng  /\  ( b  e.  B  /\  d  e.  B
) ) )
13 3anass 985 . . . . 5  |-  ( ( R  e. Rng  /\  b  e.  B  /\  d  e.  B )  <->  ( R  e. Rng  /\  ( b  e.  B  /\  d  e.  B ) ) )
1412, 13sylibr 134 . . . 4  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( R  e. Rng  /\  b  e.  B  /\  d  e.  B )
)
153, 10rngcl 13781 . . . 4  |-  ( ( R  e. Rng  /\  b  e.  B  /\  d  e.  B )  ->  (
b  .x.  d )  e.  B )
1614, 15syl 14 . . 3  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( b  e.  B  /\  d  e.  B ) )  -> 
( b  .x.  d
)  e.  B )
17 qusmulrng.a . . 3  |-  .xb  =  ( .r `  H )
182, 4, 7, 8, 11, 16, 10, 17qusmulval 13244 . 2  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  X  e.  B  /\  Y  e.  B
)  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
19183expb 1207 1  |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R
)  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( [ X ]  .~  .xb  [ Y ]  .~  )  =  [
( X  .x.  Y
) ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   ` cfv 5280  (class class class)co 5957    Er wer 6630   [cec 6631   Basecbs 12907   .rcmulr 12985    /.s cqus 13207  SubGrpcsubg 13578   ~QG cqg 13580  Rngcrng 13769  2Idealc2idl 14336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-tpos 6344  df-er 6633  df-ec 6635  df-qs 6639  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-0g 13165  df-iimas 13209  df-qus 13210  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-sbg 13412  df-subg 13581  df-eqg 13583  df-cmn 13697  df-abl 13698  df-mgp 13758  df-rng 13770  df-oppr 13905  df-lssm 14190  df-sra 14272  df-rgmod 14273  df-lidl 14306  df-2idl 14337
This theorem is referenced by:  quscrng  14370
  Copyright terms: Public domain W3C validator