ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resrhm2b GIF version

Theorem resrhm2b 14178
Description: Restriction of the codomain of a (ring) homomorphism. resghm2b 13765 analog. (Contributed by SN, 7-Feb-2025.)
Hypothesis
Ref Expression
resrhm2b.u 𝑈 = (𝑇s 𝑋)
Assertion
Ref Expression
resrhm2b ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))

Proof of Theorem resrhm2b
StepHypRef Expression
1 subrgsubg 14156 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubGrp‘𝑇))
2 resrhm2b.u . . . . . . 7 𝑈 = (𝑇s 𝑋)
32resghm2b 13765 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
41, 3sylan 283 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
5 eqid 2209 . . . . . . . 8 (mulGrp‘𝑇) = (mulGrp‘𝑇)
65subrgsubm 14163 . . . . . . 7 (𝑋 ∈ (SubRing‘𝑇) → 𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)))
7 eqid 2209 . . . . . . . 8 ((mulGrp‘𝑇) ↾s 𝑋) = ((mulGrp‘𝑇) ↾s 𝑋)
87resmhm2b 13488 . . . . . . 7 ((𝑋 ∈ (SubMnd‘(mulGrp‘𝑇)) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
96, 8sylan 283 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋))))
10 subrgrcl 14155 . . . . . . . . . 10 (𝑋 ∈ (SubRing‘𝑇) → 𝑇 ∈ Ring)
112, 5mgpress 13860 . . . . . . . . . 10 ((𝑇 ∈ Ring ∧ 𝑋 ∈ (SubRing‘𝑇)) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1210, 11mpancom 422 . . . . . . . . 9 (𝑋 ∈ (SubRing‘𝑇) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1312adantr 276 . . . . . . . 8 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑇) ↾s 𝑋) = (mulGrp‘𝑈))
1413oveq2d 5990 . . . . . . 7 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) = ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
1514eleq2d 2279 . . . . . 6 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom ((mulGrp‘𝑇) ↾s 𝑋)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
169, 15bitrd 188 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
174, 16anbi12d 473 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
1817anbi2d 464 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ (𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
1910adantr 276 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑇 ∈ Ring)
2019biantrud 304 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring)))
2120anbi1d 465 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))))
222subrgring 14153 . . . . . 6 (𝑋 ∈ (SubRing‘𝑇) → 𝑈 ∈ Ring)
2322adantr 276 . . . . 5 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → 𝑈 ∈ Ring)
2423biantrud 304 . . . 4 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝑆 ∈ Ring ↔ (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)))
2524anbi1d 465 . . 3 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → ((𝑆 ∈ Ring ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
2618, 21, 253bitr3d 218 . 2 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))))
27 eqid 2209 . . 3 (mulGrp‘𝑆) = (mulGrp‘𝑆)
2827, 5isrhm 14087 . 2 (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
29 eqid 2209 . . 3 (mulGrp‘𝑈) = (mulGrp‘𝑈)
3027, 29isrhm 14087 . 2 (𝐹 ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
3126, 28, 303bitr4g 223 1 ((𝑋 ∈ (SubRing‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom 𝑈)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wss 3177  ran crn 4697  cfv 5294  (class class class)co 5974  s cress 12999   MndHom cmhm 13456  SubMndcsubmnd 13457  SubGrpcsubg 13670   GrpHom cghm 13743  mulGrpcmgp 13849  Ringcrg 13925   RingHom crh 14079  SubRingcsubrg 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-map 6767  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-submnd 13459  df-grp 13502  df-minusg 13503  df-subg 13673  df-ghm 13744  df-mgp 13850  df-ur 13889  df-ring 13927  df-rhm 14081  df-subrg 14148
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator