ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2b Unicode version

Theorem resmhm2b 13064
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resmhm2b  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )

Proof of Theorem resmhm2b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 13038 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
21adantl 277 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  S  e.  Mnd )
3 resmhm2.u . . . . 5  |-  U  =  ( Ts  X )
43submmnd 13055 . . . 4  |-  ( X  e.  (SubMnd `  T
)  ->  U  e.  Mnd )
54ad2antrr 488 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  U  e.  Mnd )
6 eqid 2193 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
7 eqid 2193 . . . . . . . . 9  |-  ( Base `  T )  =  (
Base `  T )
86, 7mhmf 13040 . . . . . . . 8  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
98adantl 277 . . . . . . 7  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  T
) )
109ffnd 5405 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  Fn  ( Base `  S
) )
11 simplr 528 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ran  F 
C_  X )
12 df-f 5259 . . . . . 6  |-  ( F : ( Base `  S
) --> X  <->  ( F  Fn  ( Base `  S
)  /\  ran  F  C_  X ) )
1310, 11, 12sylanbrc 417 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> X )
143submbas 13056 . . . . . . 7  |-  ( X  e.  (SubMnd `  T
)  ->  X  =  ( Base `  U )
)
1514ad2antrr 488 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  X  =  ( Base `  U
) )
1615feq3d 5393 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> X  <->  F :
( Base `  S ) --> ( Base `  U )
) )
1713, 16mpbid 147 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  U
) )
18 eqid 2193 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
19 eqid 2193 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
206, 18, 19mhmlin 13042 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
21203expb 1206 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
2221adantll 476 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) )
233a1i 9 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  U  =  ( Ts  X ) )
24 eqidd 2194 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  T ) )
25 id 19 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  X  e.  (SubMnd `  T ) )
26 submrcl 13046 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  T  e.  Mnd )
2723, 24, 25, 26ressplusgd 12749 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  U ) )
2827ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( +g  `  T )  =  ( +g  `  U
) )
2928oveqd 5936 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  (
( F `  x
) ( +g  `  T
) ( F `  y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3022, 29eqtrd 2226 . . . . 5  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3130ralrimivva 2576 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) ) )
32 eqid 2193 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
33 eqid 2193 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
3432, 33mhm0 13043 . . . . . 6  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
3534adantl 277 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
363, 33subm0 13057 . . . . . 6  |-  ( X  e.  (SubMnd `  T
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3736ad2antrr 488 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( 0g `  T )  =  ( 0g `  U
) )
3835, 37eqtrd 2226 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  U
) )
3917, 31, 383jca 1179 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) )
40 eqid 2193 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
41 eqid 2193 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
42 eqid 2193 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
436, 40, 18, 41, 32, 42ismhm 13036 . . 3  |-  ( F  e.  ( S MndHom  U
)  <->  ( ( S  e.  Mnd  /\  U  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) ) )
442, 5, 39, 43syl21anbrc 1184 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  e.  ( S MndHom  U ) )
453resmhm2 13063 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )
4645ancoms 268 . . 3  |-  ( ( X  e.  (SubMnd `  T )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4746adantlr 477 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4844, 47impbida 596 1  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3154   ran crn 4661    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919   Basecbs 12621   ↾s cress 12622   +g cplusg 12698   0gc0g 12870   Mndcmnd 13000   MndHom cmhm 13032  SubMndcsubmnd 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-submnd 13035
This theorem is referenced by:  resghm2b  13335  resrhm2b  13748  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator