ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2b Unicode version

Theorem resmhm2b 13321
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resmhm2b  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )

Proof of Theorem resmhm2b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 13295 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
21adantl 277 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  S  e.  Mnd )
3 resmhm2.u . . . . 5  |-  U  =  ( Ts  X )
43submmnd 13312 . . . 4  |-  ( X  e.  (SubMnd `  T
)  ->  U  e.  Mnd )
54ad2antrr 488 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  U  e.  Mnd )
6 eqid 2205 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
7 eqid 2205 . . . . . . . . 9  |-  ( Base `  T )  =  (
Base `  T )
86, 7mhmf 13297 . . . . . . . 8  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
98adantl 277 . . . . . . 7  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  T
) )
109ffnd 5426 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  Fn  ( Base `  S
) )
11 simplr 528 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ran  F 
C_  X )
12 df-f 5275 . . . . . 6  |-  ( F : ( Base `  S
) --> X  <->  ( F  Fn  ( Base `  S
)  /\  ran  F  C_  X ) )
1310, 11, 12sylanbrc 417 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> X )
143submbas 13313 . . . . . . 7  |-  ( X  e.  (SubMnd `  T
)  ->  X  =  ( Base `  U )
)
1514ad2antrr 488 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  X  =  ( Base `  U
) )
1615feq3d 5414 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> X  <->  F :
( Base `  S ) --> ( Base `  U )
) )
1713, 16mpbid 147 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  U
) )
18 eqid 2205 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
19 eqid 2205 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
206, 18, 19mhmlin 13299 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
21203expb 1207 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
2221adantll 476 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) )
233a1i 9 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  U  =  ( Ts  X ) )
24 eqidd 2206 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  T ) )
25 id 19 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  X  e.  (SubMnd `  T ) )
26 submrcl 13303 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  T  e.  Mnd )
2723, 24, 25, 26ressplusgd 12961 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  U ) )
2827ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( +g  `  T )  =  ( +g  `  U
) )
2928oveqd 5961 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  (
( F `  x
) ( +g  `  T
) ( F `  y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3022, 29eqtrd 2238 . . . . 5  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3130ralrimivva 2588 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) ) )
32 eqid 2205 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
33 eqid 2205 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
3432, 33mhm0 13300 . . . . . 6  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
3534adantl 277 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
363, 33subm0 13314 . . . . . 6  |-  ( X  e.  (SubMnd `  T
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3736ad2antrr 488 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( 0g `  T )  =  ( 0g `  U
) )
3835, 37eqtrd 2238 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  U
) )
3917, 31, 383jca 1180 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) )
40 eqid 2205 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
41 eqid 2205 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
42 eqid 2205 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
436, 40, 18, 41, 32, 42ismhm 13293 . . 3  |-  ( F  e.  ( S MndHom  U
)  <->  ( ( S  e.  Mnd  /\  U  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) ) )
442, 5, 39, 43syl21anbrc 1185 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  e.  ( S MndHom  U ) )
453resmhm2 13320 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )
4645ancoms 268 . . 3  |-  ( ( X  e.  (SubMnd `  T )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4746adantlr 477 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4844, 47impbida 596 1  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   ran crn 4676    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248   MndHom cmhm 13289  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-submnd 13292
This theorem is referenced by:  resghm2b  13598  resrhm2b  14011  lgseisenlem4  15550
  Copyright terms: Public domain W3C validator