ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2b Unicode version

Theorem resmhm2b 13191
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resmhm2b  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )

Proof of Theorem resmhm2b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 13165 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
21adantl 277 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  S  e.  Mnd )
3 resmhm2.u . . . . 5  |-  U  =  ( Ts  X )
43submmnd 13182 . . . 4  |-  ( X  e.  (SubMnd `  T
)  ->  U  e.  Mnd )
54ad2antrr 488 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  U  e.  Mnd )
6 eqid 2196 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
7 eqid 2196 . . . . . . . . 9  |-  ( Base `  T )  =  (
Base `  T )
86, 7mhmf 13167 . . . . . . . 8  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
98adantl 277 . . . . . . 7  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  T
) )
109ffnd 5411 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  Fn  ( Base `  S
) )
11 simplr 528 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ran  F 
C_  X )
12 df-f 5263 . . . . . 6  |-  ( F : ( Base `  S
) --> X  <->  ( F  Fn  ( Base `  S
)  /\  ran  F  C_  X ) )
1310, 11, 12sylanbrc 417 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> X )
143submbas 13183 . . . . . . 7  |-  ( X  e.  (SubMnd `  T
)  ->  X  =  ( Base `  U )
)
1514ad2antrr 488 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  X  =  ( Base `  U
) )
1615feq3d 5399 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> X  <->  F :
( Base `  S ) --> ( Base `  U )
) )
1713, 16mpbid 147 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  U
) )
18 eqid 2196 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
19 eqid 2196 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
206, 18, 19mhmlin 13169 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
21203expb 1206 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
2221adantll 476 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) )
233a1i 9 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  U  =  ( Ts  X ) )
24 eqidd 2197 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  T ) )
25 id 19 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  X  e.  (SubMnd `  T ) )
26 submrcl 13173 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  T  e.  Mnd )
2723, 24, 25, 26ressplusgd 12831 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  U ) )
2827ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( +g  `  T )  =  ( +g  `  U
) )
2928oveqd 5942 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  (
( F `  x
) ( +g  `  T
) ( F `  y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3022, 29eqtrd 2229 . . . . 5  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3130ralrimivva 2579 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) ) )
32 eqid 2196 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
33 eqid 2196 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
3432, 33mhm0 13170 . . . . . 6  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
3534adantl 277 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
363, 33subm0 13184 . . . . . 6  |-  ( X  e.  (SubMnd `  T
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3736ad2antrr 488 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( 0g `  T )  =  ( 0g `  U
) )
3835, 37eqtrd 2229 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  U
) )
3917, 31, 383jca 1179 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) )
40 eqid 2196 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
41 eqid 2196 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
42 eqid 2196 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
436, 40, 18, 41, 32, 42ismhm 13163 . . 3  |-  ( F  e.  ( S MndHom  U
)  <->  ( ( S  e.  Mnd  /\  U  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) ) )
442, 5, 39, 43syl21anbrc 1184 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  e.  ( S MndHom  U ) )
453resmhm2 13190 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )
4645ancoms 268 . . 3  |-  ( ( X  e.  (SubMnd `  T )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4746adantlr 477 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4844, 47impbida 596 1  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ran crn 4665    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   0gc0g 12958   Mndcmnd 13118   MndHom cmhm 13159  SubMndcsubmnd 13160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-submnd 13162
This theorem is referenced by:  resghm2b  13468  resrhm2b  13881  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator