ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resmhm2b Unicode version

Theorem resmhm2b 12941
Description: Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypothesis
Ref Expression
resmhm2.u  |-  U  =  ( Ts  X )
Assertion
Ref Expression
resmhm2b  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )

Proof of Theorem resmhm2b
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl1 12915 . . . 4  |-  ( F  e.  ( S MndHom  T
)  ->  S  e.  Mnd )
21adantl 277 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  S  e.  Mnd )
3 resmhm2.u . . . . 5  |-  U  =  ( Ts  X )
43submmnd 12932 . . . 4  |-  ( X  e.  (SubMnd `  T
)  ->  U  e.  Mnd )
54ad2antrr 488 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  U  e.  Mnd )
6 eqid 2189 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
7 eqid 2189 . . . . . . . . 9  |-  ( Base `  T )  =  (
Base `  T )
86, 7mhmf 12917 . . . . . . . 8  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
98adantl 277 . . . . . . 7  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  T
) )
109ffnd 5385 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  Fn  ( Base `  S
) )
11 simplr 528 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ran  F 
C_  X )
12 df-f 5239 . . . . . 6  |-  ( F : ( Base `  S
) --> X  <->  ( F  Fn  ( Base `  S
)  /\  ran  F  C_  X ) )
1310, 11, 12sylanbrc 417 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> X )
143submbas 12933 . . . . . . 7  |-  ( X  e.  (SubMnd `  T
)  ->  X  =  ( Base `  U )
)
1514ad2antrr 488 . . . . . 6  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  X  =  ( Base `  U
) )
1615feq3d 5373 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> X  <->  F :
( Base `  S ) --> ( Base `  U )
) )
1713, 16mpbid 147 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F : ( Base `  S
) --> ( Base `  U
) )
18 eqid 2189 . . . . . . . . 9  |-  ( +g  `  S )  =  ( +g  `  S )
19 eqid 2189 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
206, 18, 19mhmlin 12919 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
21203expb 1206 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) ) )  -> 
( F `  (
x ( +g  `  S
) y ) )  =  ( ( F `
 x ) ( +g  `  T ) ( F `  y
) ) )
2221adantll 476 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) )
233a1i 9 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  U  =  ( Ts  X ) )
24 eqidd 2190 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  T ) )
25 id 19 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  X  e.  (SubMnd `  T ) )
26 submrcl 12923 . . . . . . . . 9  |-  ( X  e.  (SubMnd `  T
)  ->  T  e.  Mnd )
2723, 24, 25, 26ressplusgd 12640 . . . . . . . 8  |-  ( X  e.  (SubMnd `  T
)  ->  ( +g  `  T )  =  ( +g  `  U ) )
2827ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( +g  `  T )  =  ( +g  `  U
) )
2928oveqd 5913 . . . . . 6  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  (
( F `  x
) ( +g  `  T
) ( F `  y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3022, 29eqtrd 2222 . . . . 5  |-  ( ( ( ( X  e.  (SubMnd `  T )  /\  ran  F  C_  X
)  /\  F  e.  ( S MndHom  T ) )  /\  ( x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
) )  ->  ( F `  ( x
( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) )
3130ralrimivva 2572 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) ) )
32 eqid 2189 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
33 eqid 2189 . . . . . . 7  |-  ( 0g
`  T )  =  ( 0g `  T
)
3432, 33mhm0 12920 . . . . . 6  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
3534adantl 277 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
363, 33subm0 12934 . . . . . 6  |-  ( X  e.  (SubMnd `  T
)  ->  ( 0g `  T )  =  ( 0g `  U ) )
3736ad2antrr 488 . . . . 5  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( 0g `  T )  =  ( 0g `  U
) )
3835, 37eqtrd 2222 . . . 4  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  U
) )
3917, 31, 383jca 1179 . . 3  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) )
40 eqid 2189 . . . 4  |-  ( Base `  U )  =  (
Base `  U )
41 eqid 2189 . . . 4  |-  ( +g  `  U )  =  ( +g  `  U )
42 eqid 2189 . . . 4  |-  ( 0g
`  U )  =  ( 0g `  U
)
436, 40, 18, 41, 32, 42ismhm 12913 . . 3  |-  ( F  e.  ( S MndHom  U
)  <->  ( ( S  e.  Mnd  /\  U  e.  Mnd )  /\  ( F : ( Base `  S
) --> ( Base `  U
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( Base `  S
) ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  U
) ( F `  y ) )  /\  ( F `  ( 0g
`  S ) )  =  ( 0g `  U ) ) ) )
442, 5, 39, 43syl21anbrc 1184 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  T ) )  ->  F  e.  ( S MndHom  U ) )
453resmhm2 12940 . . . 4  |-  ( ( F  e.  ( S MndHom  U )  /\  X  e.  (SubMnd `  T )
)  ->  F  e.  ( S MndHom  T ) )
4645ancoms 268 . . 3  |-  ( ( X  e.  (SubMnd `  T )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4746adantlr 477 . 2  |-  ( ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  /\  F  e.  ( S MndHom  U ) )  ->  F  e.  ( S MndHom  T ) )
4844, 47impbida 596 1  |-  ( ( X  e.  (SubMnd `  T )  /\  ran  F 
C_  X )  -> 
( F  e.  ( S MndHom  T )  <->  F  e.  ( S MndHom  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468    C_ wss 3144   ran crn 4645    Fn wfn 5230   -->wf 5231   ` cfv 5235  (class class class)co 5896   Basecbs 12512   ↾s cress 12513   +g cplusg 12589   0gc0g 12761   Mndcmnd 12877   MndHom cmhm 12909  SubMndcsubmnd 12910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-map 6676  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-plusg 12602  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-mhm 12911  df-submnd 12912
This theorem is referenced by:  resghm2b  13201
  Copyright terms: Public domain W3C validator