ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expghmap Unicode version

Theorem expghmap 14095
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
Hypotheses
Ref Expression
expghm.m  |-  M  =  (mulGrp ` fld )
expghmap.u  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
Assertion
Ref Expression
expghmap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Distinct variable group:    x, A, z
Allowed substitution hints:    U( x, z)    M( x, z)

Proof of Theorem expghmap
Dummy variables  r  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzaplem 10634 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  x  e.  ZZ )  ->  ( A ^ x )  e. 
{ z  e.  CC  |  z #  0 }
)
213expa 1205 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ZZ )  ->  ( A ^ x
)  e.  { z  e.  CC  |  z #  0 } )
32fmpttd 5713 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 } )
4 expaddzap 10654 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  =  ( ( A ^
u )  x.  ( A ^ v ) ) )
5 eqid 2193 . . . . . 6  |-  ( x  e.  ZZ  |->  ( A ^ x ) )  =  ( x  e.  ZZ  |->  ( A ^
x ) )
6 oveq2 5926 . . . . . 6  |-  ( x  =  ( u  +  v )  ->  ( A ^ x )  =  ( A ^ (
u  +  v ) ) )
7 zaddcl 9357 . . . . . . 7  |-  ( ( u  e.  ZZ  /\  v  e.  ZZ )  ->  ( u  +  v )  e.  ZZ )
87adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( u  +  v )  e.  ZZ )
9 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A  e.  CC )
10 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A #  0
)
119, 10, 8expclzapd 10749 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  e.  CC )
125, 6, 8, 11fvmptd3 5651 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( A ^
( u  +  v ) ) )
13 oveq2 5926 . . . . . . 7  |-  ( x  =  u  ->  ( A ^ x )  =  ( A ^ u
) )
14 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  u  e.  ZZ )
159, 10, 14expclzapd 10749 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ u )  e.  CC )
165, 13, 14, 15fvmptd3 5651 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
17 oveq2 5926 . . . . . . 7  |-  ( x  =  v  ->  ( A ^ x )  =  ( A ^ v
) )
18 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  v  e.  ZZ )
199, 10, 18expclzapd 10749 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ v )  e.  CC )
205, 17, 18, 19fvmptd3 5651 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
2116, 20oveq12d 5936 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  =  ( ( A ^ u )  x.  ( A ^ v
) ) )
224, 12, 213eqtr4d 2236 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
2322ralrimivva 2576 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
24 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  u  e.  ZZ )
2515anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ u )  e.  CC )
265, 13, 24, 25fvmptd3 5651 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
2726, 25eqeltrd 2270 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  e.  CC )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  v  e.  ZZ )
2919anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ v )  e.  CC )
305, 17, 28, 29fvmptd3 5651 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
3130, 29eqeltrd 2270 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  e.  CC )
3227, 31mulcld 8040 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  e.  CC )
33 oveq1 5925 . . . . . . . 8  |-  ( r  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  -> 
( r  x.  s
)  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  s ) )
34 oveq2 5926 . . . . . . . 8  |-  ( s  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v )  -> 
( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  s )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) )
35 eqid 2193 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )
3633, 34, 35ovmpog 6053 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  e.  CC  /\  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v )  e.  CC  /\  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  e.  CC )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3727, 31, 32, 36syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3837eqeq2d 2205 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  <->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
3938ralbidva 2490 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  ->  ( A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  <->  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) ) )
4039ralbidva 2490 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  <->  A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
4123, 40mpbird 167 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
42 zringgrp 14083 . . . 4  |-ring  e.  Grp
43 cnring 14058 . . . . 5  |-fld  e.  Ring
44 cnfldui 14077 . . . . . 6  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
45 expghmap.u . . . . . . 7  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
46 expghm.m . . . . . . . 8  |-  M  =  (mulGrp ` fld )
4746oveq1i 5928 . . . . . . 7  |-  ( Ms  { z  e.  CC  | 
z #  0 } )  =  ( (mulGrp ` fld )s  {
z  e.  CC  | 
z #  0 } )
4845, 47eqtri 2214 . . . . . 6  |-  U  =  ( (mulGrp ` fld )s  { z  e.  CC  |  z #  0 }
)
4944, 48unitgrp 13612 . . . . 5  |-  (fld  e.  Ring  ->  U  e.  Grp )
5043, 49ax-mp 5 . . . 4  |-  U  e. 
Grp
5142, 50pm3.2i 272 . . 3  |-  (ring  e.  Grp  /\  U  e.  Grp )
52 zringbas 14084 . . . 4  |-  ZZ  =  ( Base ` ring )
5345a1i 9 . . . . . 6  |-  ( T. 
->  U  =  ( Ms  { z  e.  CC  |  z #  0 }
) )
54 cnfldbas 14051 . . . . . . . 8  |-  CC  =  ( Base ` fld )
5546, 54mgpbasg 13422 . . . . . . 7  |-  (fld  e.  Ring  ->  CC  =  ( Base `  M ) )
5643, 55mp1i 10 . . . . . 6  |-  ( T. 
->  CC  =  ( Base `  M ) )
5746mgpex 13421 . . . . . . 7  |-  (fld  e.  Ring  ->  M  e.  _V )
5843, 57mp1i 10 . . . . . 6  |-  ( T. 
->  M  e.  _V )
59 apsscn 8666 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  C_  CC
6059a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  C_  CC )
6153, 56, 58, 60ressbas2d 12686 . . . . 5  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  =  ( Base `  U
) )
6261mptru 1373 . . . 4  |-  { z  e.  CC  |  z #  0 }  =  (
Base `  U )
63 zringplusg 14085 . . . 4  |-  +  =  ( +g  ` ring )
64 mpocnfldmul 14055 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( .r ` fld )
6546, 64mgpplusgg 13420 . . . . . . 7  |-  (fld  e.  Ring  -> 
( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
6643, 65mp1i 10 . . . . . 6  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
67 cnex 7996 . . . . . . . 8  |-  CC  e.  _V
6867rabex 4173 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  e.  _V
6968a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  e.  _V )
7053, 66, 69, 58ressplusgd 12746 . . . . 5  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  U ) )
7170mptru 1373 . . . 4  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( +g  `  U
)
7252, 62, 63, 71isghm 13313 . . 3  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( (ring  e.  Grp  /\  U  e.  Grp )  /\  (
( x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) ) )
7351, 72mpbiran 942 . 2  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( ( x  e.  ZZ  |->  ( A ^
x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
743, 41, 73sylanbrc 417 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760    C_ wss 3153   class class class wbr 4029    |-> cmpt 4090   -->wf 5250   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   CCcc 7870   0cc0 7872    + caddc 7875    x. cmul 7877   # cap 8600   ZZcz 9317   ^cexp 10609   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   Grpcgrp 13072    GrpHom cghm 13310  mulGrpcmgp 13416   Ringcrg 13492  ℂfldccnfld 14047  ℤringczring 14078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-subrg 13715  df-icnfld 14048  df-zring 14079
This theorem is referenced by:  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator