ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expghmap Unicode version

Theorem expghmap 14536
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
Hypotheses
Ref Expression
expghm.m  |-  M  =  (mulGrp ` fld )
expghmap.u  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
Assertion
Ref Expression
expghmap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Distinct variable group:    x, A, z
Allowed substitution hints:    U( x, z)    M( x, z)

Proof of Theorem expghmap
Dummy variables  r  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzaplem 10752 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  x  e.  ZZ )  ->  ( A ^ x )  e. 
{ z  e.  CC  |  z #  0 }
)
213expa 1208 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ZZ )  ->  ( A ^ x
)  e.  { z  e.  CC  |  z #  0 } )
32fmpttd 5763 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 } )
4 expaddzap 10772 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  =  ( ( A ^
u )  x.  ( A ^ v ) ) )
5 eqid 2209 . . . . . 6  |-  ( x  e.  ZZ  |->  ( A ^ x ) )  =  ( x  e.  ZZ  |->  ( A ^
x ) )
6 oveq2 5982 . . . . . 6  |-  ( x  =  ( u  +  v )  ->  ( A ^ x )  =  ( A ^ (
u  +  v ) ) )
7 zaddcl 9454 . . . . . . 7  |-  ( ( u  e.  ZZ  /\  v  e.  ZZ )  ->  ( u  +  v )  e.  ZZ )
87adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( u  +  v )  e.  ZZ )
9 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A  e.  CC )
10 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A #  0
)
119, 10, 8expclzapd 10867 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  e.  CC )
125, 6, 8, 11fvmptd3 5701 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( A ^
( u  +  v ) ) )
13 oveq2 5982 . . . . . . 7  |-  ( x  =  u  ->  ( A ^ x )  =  ( A ^ u
) )
14 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  u  e.  ZZ )
159, 10, 14expclzapd 10867 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ u )  e.  CC )
165, 13, 14, 15fvmptd3 5701 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
17 oveq2 5982 . . . . . . 7  |-  ( x  =  v  ->  ( A ^ x )  =  ( A ^ v
) )
18 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  v  e.  ZZ )
199, 10, 18expclzapd 10867 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ v )  e.  CC )
205, 17, 18, 19fvmptd3 5701 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
2116, 20oveq12d 5992 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  =  ( ( A ^ u )  x.  ( A ^ v
) ) )
224, 12, 213eqtr4d 2252 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
2322ralrimivva 2592 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
24 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  u  e.  ZZ )
2515anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ u )  e.  CC )
265, 13, 24, 25fvmptd3 5701 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
2726, 25eqeltrd 2286 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  e.  CC )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  v  e.  ZZ )
2919anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ v )  e.  CC )
305, 17, 28, 29fvmptd3 5701 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
3130, 29eqeltrd 2286 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  e.  CC )
3227, 31mulcld 8135 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  e.  CC )
33 oveq1 5981 . . . . . . . 8  |-  ( r  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  -> 
( r  x.  s
)  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  s ) )
34 oveq2 5982 . . . . . . . 8  |-  ( s  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v )  -> 
( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  s )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) )
35 eqid 2209 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )
3633, 34, 35ovmpog 6110 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  e.  CC  /\  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v )  e.  CC  /\  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  e.  CC )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3727, 31, 32, 36syl3anc 1252 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3837eqeq2d 2221 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  <->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
3938ralbidva 2506 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  ->  ( A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  <->  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) ) )
4039ralbidva 2506 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  <->  A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
4123, 40mpbird 167 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
42 zringgrp 14524 . . . 4  |-ring  e.  Grp
43 cnring 14499 . . . . 5  |-fld  e.  Ring
44 cnfldui 14518 . . . . . 6  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
45 expghmap.u . . . . . . 7  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
46 expghm.m . . . . . . . 8  |-  M  =  (mulGrp ` fld )
4746oveq1i 5984 . . . . . . 7  |-  ( Ms  { z  e.  CC  | 
z #  0 } )  =  ( (mulGrp ` fld )s  {
z  e.  CC  | 
z #  0 } )
4845, 47eqtri 2230 . . . . . 6  |-  U  =  ( (mulGrp ` fld )s  { z  e.  CC  |  z #  0 }
)
4944, 48unitgrp 14045 . . . . 5  |-  (fld  e.  Ring  ->  U  e.  Grp )
5043, 49ax-mp 5 . . . 4  |-  U  e. 
Grp
5142, 50pm3.2i 272 . . 3  |-  (ring  e.  Grp  /\  U  e.  Grp )
52 zringbas 14525 . . . 4  |-  ZZ  =  ( Base ` ring )
5345a1i 9 . . . . . 6  |-  ( T. 
->  U  =  ( Ms  { z  e.  CC  |  z #  0 }
) )
54 cnfldbas 14489 . . . . . . . 8  |-  CC  =  ( Base ` fld )
5546, 54mgpbasg 13855 . . . . . . 7  |-  (fld  e.  Ring  ->  CC  =  ( Base `  M ) )
5643, 55mp1i 10 . . . . . 6  |-  ( T. 
->  CC  =  ( Base `  M ) )
5746mgpex 13854 . . . . . . 7  |-  (fld  e.  Ring  ->  M  e.  _V )
5843, 57mp1i 10 . . . . . 6  |-  ( T. 
->  M  e.  _V )
59 apsscn 8762 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  C_  CC
6059a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  C_  CC )
6153, 56, 58, 60ressbas2d 13067 . . . . 5  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  =  ( Base `  U
) )
6261mptru 1384 . . . 4  |-  { z  e.  CC  |  z #  0 }  =  (
Base `  U )
63 zringplusg 14526 . . . 4  |-  +  =  ( +g  ` ring )
64 mpocnfldmul 14492 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( .r ` fld )
6546, 64mgpplusgg 13853 . . . . . . 7  |-  (fld  e.  Ring  -> 
( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
6643, 65mp1i 10 . . . . . 6  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
67 cnex 8091 . . . . . . . 8  |-  CC  e.  _V
6867rabex 4207 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  e.  _V
6968a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  e.  _V )
7053, 66, 69, 58ressplusgd 13128 . . . . 5  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  U ) )
7170mptru 1384 . . . 4  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( +g  `  U
)
7252, 62, 63, 71isghm 13746 . . 3  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( (ring  e.  Grp  /\  U  e.  Grp )  /\  (
( x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) ) )
7351, 72mpbiran 945 . 2  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( ( x  e.  ZZ  |->  ( A ^
x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
743, 41, 73sylanbrc 417 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1375   T. wtru 1376    e. wcel 2180   A.wral 2488   {crab 2492   _Vcvv 2779    C_ wss 3177   class class class wbr 4062    |-> cmpt 4124   -->wf 5290   ` cfv 5294  (class class class)co 5974    e. cmpo 5976   CCcc 7965   0cc0 7967    + caddc 7970    x. cmul 7972   # cap 8696   ZZcz 9414   ^cexp 10727   Basecbs 12998   ↾s cress 12999   +g cplusg 13076   Grpcgrp 13499    GrpHom cghm 13743  mulGrpcmgp 13849   Ringcrg 13925  ℂfldccnfld 14485  ℤringczring 14519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-rp 9818  df-fz 10173  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-abs 11476  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-subg 13673  df-ghm 13744  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-unit 14019  df-subrg 14148  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520
This theorem is referenced by:  lgseisenlem4  15717
  Copyright terms: Public domain W3C validator