| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expghmap | Unicode version | ||
| Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| expghm.m |
|
| expghmap.u |
|
| Ref | Expression |
|---|---|
| expghmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expclzaplem 10793 |
. . . 4
| |
| 2 | 1 | 3expa 1227 |
. . 3
|
| 3 | 2 | fmpttd 5792 |
. 2
|
| 4 | expaddzap 10813 |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . . 6
| |
| 6 | oveq2 6015 |
. . . . . 6
| |
| 7 | zaddcl 9494 |
. . . . . . 7
| |
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | simpll 527 |
. . . . . . 7
| |
| 10 | simplr 528 |
. . . . . . 7
| |
| 11 | 9, 10, 8 | expclzapd 10908 |
. . . . . 6
|
| 12 | 5, 6, 8, 11 | fvmptd3 5730 |
. . . . 5
|
| 13 | oveq2 6015 |
. . . . . . 7
| |
| 14 | simprl 529 |
. . . . . . 7
| |
| 15 | 9, 10, 14 | expclzapd 10908 |
. . . . . . 7
|
| 16 | 5, 13, 14, 15 | fvmptd3 5730 |
. . . . . 6
|
| 17 | oveq2 6015 |
. . . . . . 7
| |
| 18 | simprr 531 |
. . . . . . 7
| |
| 19 | 9, 10, 18 | expclzapd 10908 |
. . . . . . 7
|
| 20 | 5, 17, 18, 19 | fvmptd3 5730 |
. . . . . 6
|
| 21 | 16, 20 | oveq12d 6025 |
. . . . 5
|
| 22 | 4, 12, 21 | 3eqtr4d 2272 |
. . . 4
|
| 23 | 22 | ralrimivva 2612 |
. . 3
|
| 24 | simplr 528 |
. . . . . . . . 9
| |
| 25 | 15 | anassrs 400 |
. . . . . . . . 9
|
| 26 | 5, 13, 24, 25 | fvmptd3 5730 |
. . . . . . . 8
|
| 27 | 26, 25 | eqeltrd 2306 |
. . . . . . 7
|
| 28 | simpr 110 |
. . . . . . . . 9
| |
| 29 | 19 | anassrs 400 |
. . . . . . . . 9
|
| 30 | 5, 17, 28, 29 | fvmptd3 5730 |
. . . . . . . 8
|
| 31 | 30, 29 | eqeltrd 2306 |
. . . . . . 7
|
| 32 | 27, 31 | mulcld 8175 |
. . . . . . 7
|
| 33 | oveq1 6014 |
. . . . . . . 8
| |
| 34 | oveq2 6015 |
. . . . . . . 8
| |
| 35 | eqid 2229 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | ovmpog 6145 |
. . . . . . 7
|
| 37 | 27, 31, 32, 36 | syl3anc 1271 |
. . . . . 6
|
| 38 | 37 | eqeq2d 2241 |
. . . . 5
|
| 39 | 38 | ralbidva 2526 |
. . . 4
|
| 40 | 39 | ralbidva 2526 |
. . 3
|
| 41 | 23, 40 | mpbird 167 |
. 2
|
| 42 | zringgrp 14567 |
. . . 4
| |
| 43 | cnring 14542 |
. . . . 5
| |
| 44 | cnfldui 14561 |
. . . . . 6
| |
| 45 | expghmap.u |
. . . . . . 7
| |
| 46 | expghm.m |
. . . . . . . 8
| |
| 47 | 46 | oveq1i 6017 |
. . . . . . 7
|
| 48 | 45, 47 | eqtri 2250 |
. . . . . 6
|
| 49 | 44, 48 | unitgrp 14088 |
. . . . 5
|
| 50 | 43, 49 | ax-mp 5 |
. . . 4
|
| 51 | 42, 50 | pm3.2i 272 |
. . 3
|
| 52 | zringbas 14568 |
. . . 4
| |
| 53 | 45 | a1i 9 |
. . . . . 6
|
| 54 | cnfldbas 14532 |
. . . . . . . 8
| |
| 55 | 46, 54 | mgpbasg 13897 |
. . . . . . 7
|
| 56 | 43, 55 | mp1i 10 |
. . . . . 6
|
| 57 | 46 | mgpex 13896 |
. . . . . . 7
|
| 58 | 43, 57 | mp1i 10 |
. . . . . 6
|
| 59 | apsscn 8802 |
. . . . . . 7
| |
| 60 | 59 | a1i 9 |
. . . . . 6
|
| 61 | 53, 56, 58, 60 | ressbas2d 13109 |
. . . . 5
|
| 62 | 61 | mptru 1404 |
. . . 4
|
| 63 | zringplusg 14569 |
. . . 4
| |
| 64 | mpocnfldmul 14535 |
. . . . . . . 8
| |
| 65 | 46, 64 | mgpplusgg 13895 |
. . . . . . 7
|
| 66 | 43, 65 | mp1i 10 |
. . . . . 6
|
| 67 | cnex 8131 |
. . . . . . . 8
| |
| 68 | 67 | rabex 4228 |
. . . . . . 7
|
| 69 | 68 | a1i 9 |
. . . . . 6
|
| 70 | 53, 66, 69, 58 | ressplusgd 13170 |
. . . . 5
|
| 71 | 70 | mptru 1404 |
. . . 4
|
| 72 | 52, 62, 63, 71 | isghm 13788 |
. . 3
|
| 73 | 51, 72 | mpbiran 946 |
. 2
|
| 74 | 3, 41, 73 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-tpos 6397 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-subg 13715 df-ghm 13786 df-cmn 13831 df-abl 13832 df-mgp 13892 df-ur 13931 df-srg 13935 df-ring 13969 df-cring 13970 df-oppr 14039 df-dvdsr 14060 df-unit 14061 df-subrg 14191 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 df-zring 14563 |
| This theorem is referenced by: lgseisenlem4 15760 |
| Copyright terms: Public domain | W3C validator |