ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expghmap Unicode version

Theorem expghmap 14579
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
Hypotheses
Ref Expression
expghm.m  |-  M  =  (mulGrp ` fld )
expghmap.u  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
Assertion
Ref Expression
expghmap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Distinct variable group:    x, A, z
Allowed substitution hints:    U( x, z)    M( x, z)

Proof of Theorem expghmap
Dummy variables  r  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzaplem 10793 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  x  e.  ZZ )  ->  ( A ^ x )  e. 
{ z  e.  CC  |  z #  0 }
)
213expa 1227 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ZZ )  ->  ( A ^ x
)  e.  { z  e.  CC  |  z #  0 } )
32fmpttd 5792 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 } )
4 expaddzap 10813 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  =  ( ( A ^
u )  x.  ( A ^ v ) ) )
5 eqid 2229 . . . . . 6  |-  ( x  e.  ZZ  |->  ( A ^ x ) )  =  ( x  e.  ZZ  |->  ( A ^
x ) )
6 oveq2 6015 . . . . . 6  |-  ( x  =  ( u  +  v )  ->  ( A ^ x )  =  ( A ^ (
u  +  v ) ) )
7 zaddcl 9494 . . . . . . 7  |-  ( ( u  e.  ZZ  /\  v  e.  ZZ )  ->  ( u  +  v )  e.  ZZ )
87adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( u  +  v )  e.  ZZ )
9 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A  e.  CC )
10 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A #  0
)
119, 10, 8expclzapd 10908 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  e.  CC )
125, 6, 8, 11fvmptd3 5730 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( A ^
( u  +  v ) ) )
13 oveq2 6015 . . . . . . 7  |-  ( x  =  u  ->  ( A ^ x )  =  ( A ^ u
) )
14 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  u  e.  ZZ )
159, 10, 14expclzapd 10908 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ u )  e.  CC )
165, 13, 14, 15fvmptd3 5730 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
17 oveq2 6015 . . . . . . 7  |-  ( x  =  v  ->  ( A ^ x )  =  ( A ^ v
) )
18 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  v  e.  ZZ )
199, 10, 18expclzapd 10908 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ v )  e.  CC )
205, 17, 18, 19fvmptd3 5730 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
2116, 20oveq12d 6025 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  =  ( ( A ^ u )  x.  ( A ^ v
) ) )
224, 12, 213eqtr4d 2272 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
2322ralrimivva 2612 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
24 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  u  e.  ZZ )
2515anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ u )  e.  CC )
265, 13, 24, 25fvmptd3 5730 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
2726, 25eqeltrd 2306 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  e.  CC )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  v  e.  ZZ )
2919anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ v )  e.  CC )
305, 17, 28, 29fvmptd3 5730 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
3130, 29eqeltrd 2306 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  e.  CC )
3227, 31mulcld 8175 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  e.  CC )
33 oveq1 6014 . . . . . . . 8  |-  ( r  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  -> 
( r  x.  s
)  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  s ) )
34 oveq2 6015 . . . . . . . 8  |-  ( s  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v )  -> 
( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  s )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) )
35 eqid 2229 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )
3633, 34, 35ovmpog 6145 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  e.  CC  /\  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v )  e.  CC  /\  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  e.  CC )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3727, 31, 32, 36syl3anc 1271 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3837eqeq2d 2241 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  <->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
3938ralbidva 2526 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  ->  ( A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  <->  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) ) )
4039ralbidva 2526 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  <->  A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
4123, 40mpbird 167 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
42 zringgrp 14567 . . . 4  |-ring  e.  Grp
43 cnring 14542 . . . . 5  |-fld  e.  Ring
44 cnfldui 14561 . . . . . 6  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
45 expghmap.u . . . . . . 7  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
46 expghm.m . . . . . . . 8  |-  M  =  (mulGrp ` fld )
4746oveq1i 6017 . . . . . . 7  |-  ( Ms  { z  e.  CC  | 
z #  0 } )  =  ( (mulGrp ` fld )s  {
z  e.  CC  | 
z #  0 } )
4845, 47eqtri 2250 . . . . . 6  |-  U  =  ( (mulGrp ` fld )s  { z  e.  CC  |  z #  0 }
)
4944, 48unitgrp 14088 . . . . 5  |-  (fld  e.  Ring  ->  U  e.  Grp )
5043, 49ax-mp 5 . . . 4  |-  U  e. 
Grp
5142, 50pm3.2i 272 . . 3  |-  (ring  e.  Grp  /\  U  e.  Grp )
52 zringbas 14568 . . . 4  |-  ZZ  =  ( Base ` ring )
5345a1i 9 . . . . . 6  |-  ( T. 
->  U  =  ( Ms  { z  e.  CC  |  z #  0 }
) )
54 cnfldbas 14532 . . . . . . . 8  |-  CC  =  ( Base ` fld )
5546, 54mgpbasg 13897 . . . . . . 7  |-  (fld  e.  Ring  ->  CC  =  ( Base `  M ) )
5643, 55mp1i 10 . . . . . 6  |-  ( T. 
->  CC  =  ( Base `  M ) )
5746mgpex 13896 . . . . . . 7  |-  (fld  e.  Ring  ->  M  e.  _V )
5843, 57mp1i 10 . . . . . 6  |-  ( T. 
->  M  e.  _V )
59 apsscn 8802 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  C_  CC
6059a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  C_  CC )
6153, 56, 58, 60ressbas2d 13109 . . . . 5  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  =  ( Base `  U
) )
6261mptru 1404 . . . 4  |-  { z  e.  CC  |  z #  0 }  =  (
Base `  U )
63 zringplusg 14569 . . . 4  |-  +  =  ( +g  ` ring )
64 mpocnfldmul 14535 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( .r ` fld )
6546, 64mgpplusgg 13895 . . . . . . 7  |-  (fld  e.  Ring  -> 
( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
6643, 65mp1i 10 . . . . . 6  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
67 cnex 8131 . . . . . . . 8  |-  CC  e.  _V
6867rabex 4228 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  e.  _V
6968a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  e.  _V )
7053, 66, 69, 58ressplusgd 13170 . . . . 5  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  U ) )
7170mptru 1404 . . . 4  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( +g  `  U
)
7252, 62, 63, 71isghm 13788 . . 3  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( (ring  e.  Grp  /\  U  e.  Grp )  /\  (
( x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) ) )
7351, 72mpbiran 946 . 2  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( ( x  e.  ZZ  |->  ( A ^
x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
743, 41, 73sylanbrc 417 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6007    e. cmpo 6009   CCcc 8005   0cc0 8007    + caddc 8010    x. cmul 8012   # cap 8736   ZZcz 9454   ^cexp 10768   Basecbs 13040   ↾s cress 13041   +g cplusg 13118   Grpcgrp 13541    GrpHom cghm 13785  mulGrpcmgp 13891   Ringcrg 13967  ℂfldccnfld 14528  ℤringczring 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-rp 9858  df-fz 10213  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-abs 11518  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-ghm 13786  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-subrg 14191  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-zring 14563
This theorem is referenced by:  lgseisenlem4  15760
  Copyright terms: Public domain W3C validator