| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expghmap | Unicode version | ||
| Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| expghm.m |
|
| expghmap.u |
|
| Ref | Expression |
|---|---|
| expghmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expclzaplem 10715 |
. . . 4
| |
| 2 | 1 | 3expa 1206 |
. . 3
|
| 3 | 2 | fmpttd 5742 |
. 2
|
| 4 | expaddzap 10735 |
. . . . 5
| |
| 5 | eqid 2206 |
. . . . . 6
| |
| 6 | oveq2 5959 |
. . . . . 6
| |
| 7 | zaddcl 9419 |
. . . . . . 7
| |
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | simpll 527 |
. . . . . . 7
| |
| 10 | simplr 528 |
. . . . . . 7
| |
| 11 | 9, 10, 8 | expclzapd 10830 |
. . . . . 6
|
| 12 | 5, 6, 8, 11 | fvmptd3 5680 |
. . . . 5
|
| 13 | oveq2 5959 |
. . . . . . 7
| |
| 14 | simprl 529 |
. . . . . . 7
| |
| 15 | 9, 10, 14 | expclzapd 10830 |
. . . . . . 7
|
| 16 | 5, 13, 14, 15 | fvmptd3 5680 |
. . . . . 6
|
| 17 | oveq2 5959 |
. . . . . . 7
| |
| 18 | simprr 531 |
. . . . . . 7
| |
| 19 | 9, 10, 18 | expclzapd 10830 |
. . . . . . 7
|
| 20 | 5, 17, 18, 19 | fvmptd3 5680 |
. . . . . 6
|
| 21 | 16, 20 | oveq12d 5969 |
. . . . 5
|
| 22 | 4, 12, 21 | 3eqtr4d 2249 |
. . . 4
|
| 23 | 22 | ralrimivva 2589 |
. . 3
|
| 24 | simplr 528 |
. . . . . . . . 9
| |
| 25 | 15 | anassrs 400 |
. . . . . . . . 9
|
| 26 | 5, 13, 24, 25 | fvmptd3 5680 |
. . . . . . . 8
|
| 27 | 26, 25 | eqeltrd 2283 |
. . . . . . 7
|
| 28 | simpr 110 |
. . . . . . . . 9
| |
| 29 | 19 | anassrs 400 |
. . . . . . . . 9
|
| 30 | 5, 17, 28, 29 | fvmptd3 5680 |
. . . . . . . 8
|
| 31 | 30, 29 | eqeltrd 2283 |
. . . . . . 7
|
| 32 | 27, 31 | mulcld 8100 |
. . . . . . 7
|
| 33 | oveq1 5958 |
. . . . . . . 8
| |
| 34 | oveq2 5959 |
. . . . . . . 8
| |
| 35 | eqid 2206 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | ovmpog 6087 |
. . . . . . 7
|
| 37 | 27, 31, 32, 36 | syl3anc 1250 |
. . . . . 6
|
| 38 | 37 | eqeq2d 2218 |
. . . . 5
|
| 39 | 38 | ralbidva 2503 |
. . . 4
|
| 40 | 39 | ralbidva 2503 |
. . 3
|
| 41 | 23, 40 | mpbird 167 |
. 2
|
| 42 | zringgrp 14401 |
. . . 4
| |
| 43 | cnring 14376 |
. . . . 5
| |
| 44 | cnfldui 14395 |
. . . . . 6
| |
| 45 | expghmap.u |
. . . . . . 7
| |
| 46 | expghm.m |
. . . . . . . 8
| |
| 47 | 46 | oveq1i 5961 |
. . . . . . 7
|
| 48 | 45, 47 | eqtri 2227 |
. . . . . 6
|
| 49 | 44, 48 | unitgrp 13922 |
. . . . 5
|
| 50 | 43, 49 | ax-mp 5 |
. . . 4
|
| 51 | 42, 50 | pm3.2i 272 |
. . 3
|
| 52 | zringbas 14402 |
. . . 4
| |
| 53 | 45 | a1i 9 |
. . . . . 6
|
| 54 | cnfldbas 14366 |
. . . . . . . 8
| |
| 55 | 46, 54 | mgpbasg 13732 |
. . . . . . 7
|
| 56 | 43, 55 | mp1i 10 |
. . . . . 6
|
| 57 | 46 | mgpex 13731 |
. . . . . . 7
|
| 58 | 43, 57 | mp1i 10 |
. . . . . 6
|
| 59 | apsscn 8727 |
. . . . . . 7
| |
| 60 | 59 | a1i 9 |
. . . . . 6
|
| 61 | 53, 56, 58, 60 | ressbas2d 12944 |
. . . . 5
|
| 62 | 61 | mptru 1382 |
. . . 4
|
| 63 | zringplusg 14403 |
. . . 4
| |
| 64 | mpocnfldmul 14369 |
. . . . . . . 8
| |
| 65 | 46, 64 | mgpplusgg 13730 |
. . . . . . 7
|
| 66 | 43, 65 | mp1i 10 |
. . . . . 6
|
| 67 | cnex 8056 |
. . . . . . . 8
| |
| 68 | 67 | rabex 4192 |
. . . . . . 7
|
| 69 | 68 | a1i 9 |
. . . . . 6
|
| 70 | 53, 66, 69, 58 | ressplusgd 13005 |
. . . . 5
|
| 71 | 70 | mptru 1382 |
. . . 4
|
| 72 | 52, 62, 63, 71 | isghm 13623 |
. . 3
|
| 73 | 51, 72 | mpbiran 943 |
. 2
|
| 74 | 3, 41, 73 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-addf 8054 ax-mulf 8055 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-tpos 6338 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-z 9380 df-dec 9512 df-uz 9656 df-rp 9783 df-fz 10138 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-abs 11354 df-struct 12878 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-starv 12968 df-tset 12972 df-ple 12973 df-ds 12975 df-unif 12976 df-0g 13134 df-topgen 13136 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-subg 13550 df-ghm 13621 df-cmn 13666 df-abl 13667 df-mgp 13727 df-ur 13766 df-srg 13770 df-ring 13804 df-cring 13805 df-oppr 13874 df-dvdsr 13895 df-unit 13896 df-subrg 14025 df-bl 14352 df-mopn 14353 df-fg 14355 df-metu 14356 df-cnfld 14363 df-zring 14397 |
| This theorem is referenced by: lgseisenlem4 15594 |
| Copyright terms: Public domain | W3C validator |