ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expghmap Unicode version

Theorem expghmap 14163
Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.)
Hypotheses
Ref Expression
expghm.m  |-  M  =  (mulGrp ` fld )
expghmap.u  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
Assertion
Ref Expression
expghmap  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Distinct variable group:    x, A, z
Allowed substitution hints:    U( x, z)    M( x, z)

Proof of Theorem expghmap
Dummy variables  r  s  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 expclzaplem 10655 . . . 4  |-  ( ( A  e.  CC  /\  A #  0  /\  x  e.  ZZ )  ->  ( A ^ x )  e. 
{ z  e.  CC  |  z #  0 }
)
213expa 1205 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  x  e.  ZZ )  ->  ( A ^ x
)  e.  { z  e.  CC  |  z #  0 } )
32fmpttd 5717 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 } )
4 expaddzap 10675 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  =  ( ( A ^
u )  x.  ( A ^ v ) ) )
5 eqid 2196 . . . . . 6  |-  ( x  e.  ZZ  |->  ( A ^ x ) )  =  ( x  e.  ZZ  |->  ( A ^
x ) )
6 oveq2 5930 . . . . . 6  |-  ( x  =  ( u  +  v )  ->  ( A ^ x )  =  ( A ^ (
u  +  v ) ) )
7 zaddcl 9366 . . . . . . 7  |-  ( ( u  e.  ZZ  /\  v  e.  ZZ )  ->  ( u  +  v )  e.  ZZ )
87adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( u  +  v )  e.  ZZ )
9 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A  e.  CC )
10 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  A #  0
)
119, 10, 8expclzapd 10770 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ ( u  +  v ) )  e.  CC )
125, 6, 8, 11fvmptd3 5655 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( A ^
( u  +  v ) ) )
13 oveq2 5930 . . . . . . 7  |-  ( x  =  u  ->  ( A ^ x )  =  ( A ^ u
) )
14 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  u  e.  ZZ )
159, 10, 14expclzapd 10770 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ u )  e.  CC )
165, 13, 14, 15fvmptd3 5655 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
17 oveq2 5930 . . . . . . 7  |-  ( x  =  v  ->  ( A ^ x )  =  ( A ^ v
) )
18 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  v  e.  ZZ )
199, 10, 18expclzapd 10770 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( A ^ v )  e.  CC )
205, 17, 18, 19fvmptd3 5655 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
2116, 20oveq12d 5940 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  =  ( ( A ^ u )  x.  ( A ^ v
) ) )
224, 12, 213eqtr4d 2239 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
2322ralrimivva 2579 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
24 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  u  e.  ZZ )
2515anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ u )  e.  CC )
265, 13, 24, 25fvmptd3 5655 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  =  ( A ^
u ) )
2726, 25eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  e.  CC )
28 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  v  e.  ZZ )
2919anassrs 400 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  ( A ^ v )  e.  CC )
305, 17, 28, 29fvmptd3 5655 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  =  ( A ^
v ) )
3130, 29eqeltrd 2273 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v )  e.  CC )
3227, 31mulcld 8047 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  e.  CC )
33 oveq1 5929 . . . . . . . 8  |-  ( r  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  -> 
( r  x.  s
)  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  s ) )
34 oveq2 5930 . . . . . . . 8  |-  ( s  =  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v )  -> 
( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  s )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) )
35 eqid 2196 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )
3633, 34, 35ovmpog 6057 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  e.  CC  /\  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v )  e.  CC  /\  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  e.  CC )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3727, 31, 32, 36syl3anc 1249 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u )  x.  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) ) )
3837eqeq2d 2208 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  /\  v  e.  ZZ )  ->  (
( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  v ) )  <->  ( (
x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
3938ralbidva 2493 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  u  e.  ZZ )  ->  ( A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) )  <->  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  ( u  +  v
) )  =  ( ( ( x  e.  ZZ  |->  ( A ^
x ) ) `  u )  x.  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) ) ) )
4039ralbidva 2493 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u ) ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  v ) )  <->  A. u  e.  ZZ  A. v  e.  ZZ  (
( x  e.  ZZ  |->  ( A ^ x ) ) `  ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `  u )  x.  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
4123, 40mpbird 167 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) )
42 zringgrp 14151 . . . 4  |-ring  e.  Grp
43 cnring 14126 . . . . 5  |-fld  e.  Ring
44 cnfldui 14145 . . . . . 6  |-  { z  e.  CC  |  z #  0 }  =  (Unit ` fld )
45 expghmap.u . . . . . . 7  |-  U  =  ( Ms  { z  e.  CC  |  z #  0 }
)
46 expghm.m . . . . . . . 8  |-  M  =  (mulGrp ` fld )
4746oveq1i 5932 . . . . . . 7  |-  ( Ms  { z  e.  CC  | 
z #  0 } )  =  ( (mulGrp ` fld )s  {
z  e.  CC  | 
z #  0 } )
4845, 47eqtri 2217 . . . . . 6  |-  U  =  ( (mulGrp ` fld )s  { z  e.  CC  |  z #  0 }
)
4944, 48unitgrp 13672 . . . . 5  |-  (fld  e.  Ring  ->  U  e.  Grp )
5043, 49ax-mp 5 . . . 4  |-  U  e. 
Grp
5142, 50pm3.2i 272 . . 3  |-  (ring  e.  Grp  /\  U  e.  Grp )
52 zringbas 14152 . . . 4  |-  ZZ  =  ( Base ` ring )
5345a1i 9 . . . . . 6  |-  ( T. 
->  U  =  ( Ms  { z  e.  CC  |  z #  0 }
) )
54 cnfldbas 14116 . . . . . . . 8  |-  CC  =  ( Base ` fld )
5546, 54mgpbasg 13482 . . . . . . 7  |-  (fld  e.  Ring  ->  CC  =  ( Base `  M ) )
5643, 55mp1i 10 . . . . . 6  |-  ( T. 
->  CC  =  ( Base `  M ) )
5746mgpex 13481 . . . . . . 7  |-  (fld  e.  Ring  ->  M  e.  _V )
5843, 57mp1i 10 . . . . . 6  |-  ( T. 
->  M  e.  _V )
59 apsscn 8674 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  C_  CC
6059a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  C_  CC )
6153, 56, 58, 60ressbas2d 12746 . . . . 5  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  =  ( Base `  U
) )
6261mptru 1373 . . . 4  |-  { z  e.  CC  |  z #  0 }  =  (
Base `  U )
63 zringplusg 14153 . . . 4  |-  +  =  ( +g  ` ring )
64 mpocnfldmul 14119 . . . . . . . 8  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( .r ` fld )
6546, 64mgpplusgg 13480 . . . . . . 7  |-  (fld  e.  Ring  -> 
( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
6643, 65mp1i 10 . . . . . 6  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  M ) )
67 cnex 8003 . . . . . . . 8  |-  CC  e.  _V
6867rabex 4177 . . . . . . 7  |-  { z  e.  CC  |  z #  0 }  e.  _V
6968a1i 9 . . . . . 6  |-  ( T. 
->  { z  e.  CC  |  z #  0 }  e.  _V )
7053, 66, 69, 58ressplusgd 12806 . . . . 5  |-  ( T. 
->  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s
) )  =  ( +g  `  U ) )
7170mptru 1373 . . . 4  |-  ( r  e.  CC ,  s  e.  CC  |->  ( r  x.  s ) )  =  ( +g  `  U
)
7252, 62, 63, 71isghm 13373 . . 3  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( (ring  e.  Grp  /\  U  e.  Grp )  /\  (
( x  e.  ZZ  |->  ( A ^ x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) ) )
7351, 72mpbiran 942 . 2  |-  ( ( x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U )  <-> 
( ( x  e.  ZZ  |->  ( A ^
x ) ) : ZZ --> { z  e.  CC  |  z #  0 }  /\  A. u  e.  ZZ  A. v  e.  ZZ  ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 ( u  +  v ) )  =  ( ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 u ) ( r  e.  CC , 
s  e.  CC  |->  ( r  x.  s ) ) ( ( x  e.  ZZ  |->  ( A ^ x ) ) `
 v ) ) ) )
743, 41, 73sylanbrc 417 1  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
x  e.  ZZ  |->  ( A ^ x ) )  e.  (ring  GrpHom  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475   {crab 2479   _Vcvv 2763    C_ wss 3157   class class class wbr 4033    |-> cmpt 4094   -->wf 5254   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   CCcc 7877   0cc0 7879    + caddc 7882    x. cmul 7884   # cap 8608   ZZcz 9326   ^cexp 10630   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   Grpcgrp 13132    GrpHom cghm 13370  mulGrpcmgp 13476   Ringcrg 13552  ℂfldccnfld 14112  ℤringczring 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-tpos 6303  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-rp 9729  df-fz 10084  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-abs 11164  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-0g 12929  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-cring 13555  df-oppr 13624  df-dvdsr 13645  df-unit 13646  df-subrg 13775  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-zring 14147
This theorem is referenced by:  lgseisenlem4  15314
  Copyright terms: Public domain W3C validator