| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expghmap | Unicode version | ||
| Description: Exponentiation is a group homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) (Revised by AV, 10-Jun-2019.) (Revised by Jim Kingdon, 11-Sep-2025.) |
| Ref | Expression |
|---|---|
| expghm.m |
|
| expghmap.u |
|
| Ref | Expression |
|---|---|
| expghmap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expclzaplem 10655 |
. . . 4
| |
| 2 | 1 | 3expa 1205 |
. . 3
|
| 3 | 2 | fmpttd 5717 |
. 2
|
| 4 | expaddzap 10675 |
. . . . 5
| |
| 5 | eqid 2196 |
. . . . . 6
| |
| 6 | oveq2 5930 |
. . . . . 6
| |
| 7 | zaddcl 9366 |
. . . . . . 7
| |
| 8 | 7 | adantl 277 |
. . . . . 6
|
| 9 | simpll 527 |
. . . . . . 7
| |
| 10 | simplr 528 |
. . . . . . 7
| |
| 11 | 9, 10, 8 | expclzapd 10770 |
. . . . . 6
|
| 12 | 5, 6, 8, 11 | fvmptd3 5655 |
. . . . 5
|
| 13 | oveq2 5930 |
. . . . . . 7
| |
| 14 | simprl 529 |
. . . . . . 7
| |
| 15 | 9, 10, 14 | expclzapd 10770 |
. . . . . . 7
|
| 16 | 5, 13, 14, 15 | fvmptd3 5655 |
. . . . . 6
|
| 17 | oveq2 5930 |
. . . . . . 7
| |
| 18 | simprr 531 |
. . . . . . 7
| |
| 19 | 9, 10, 18 | expclzapd 10770 |
. . . . . . 7
|
| 20 | 5, 17, 18, 19 | fvmptd3 5655 |
. . . . . 6
|
| 21 | 16, 20 | oveq12d 5940 |
. . . . 5
|
| 22 | 4, 12, 21 | 3eqtr4d 2239 |
. . . 4
|
| 23 | 22 | ralrimivva 2579 |
. . 3
|
| 24 | simplr 528 |
. . . . . . . . 9
| |
| 25 | 15 | anassrs 400 |
. . . . . . . . 9
|
| 26 | 5, 13, 24, 25 | fvmptd3 5655 |
. . . . . . . 8
|
| 27 | 26, 25 | eqeltrd 2273 |
. . . . . . 7
|
| 28 | simpr 110 |
. . . . . . . . 9
| |
| 29 | 19 | anassrs 400 |
. . . . . . . . 9
|
| 30 | 5, 17, 28, 29 | fvmptd3 5655 |
. . . . . . . 8
|
| 31 | 30, 29 | eqeltrd 2273 |
. . . . . . 7
|
| 32 | 27, 31 | mulcld 8047 |
. . . . . . 7
|
| 33 | oveq1 5929 |
. . . . . . . 8
| |
| 34 | oveq2 5930 |
. . . . . . . 8
| |
| 35 | eqid 2196 |
. . . . . . . 8
| |
| 36 | 33, 34, 35 | ovmpog 6057 |
. . . . . . 7
|
| 37 | 27, 31, 32, 36 | syl3anc 1249 |
. . . . . 6
|
| 38 | 37 | eqeq2d 2208 |
. . . . 5
|
| 39 | 38 | ralbidva 2493 |
. . . 4
|
| 40 | 39 | ralbidva 2493 |
. . 3
|
| 41 | 23, 40 | mpbird 167 |
. 2
|
| 42 | zringgrp 14151 |
. . . 4
| |
| 43 | cnring 14126 |
. . . . 5
| |
| 44 | cnfldui 14145 |
. . . . . 6
| |
| 45 | expghmap.u |
. . . . . . 7
| |
| 46 | expghm.m |
. . . . . . . 8
| |
| 47 | 46 | oveq1i 5932 |
. . . . . . 7
|
| 48 | 45, 47 | eqtri 2217 |
. . . . . 6
|
| 49 | 44, 48 | unitgrp 13672 |
. . . . 5
|
| 50 | 43, 49 | ax-mp 5 |
. . . 4
|
| 51 | 42, 50 | pm3.2i 272 |
. . 3
|
| 52 | zringbas 14152 |
. . . 4
| |
| 53 | 45 | a1i 9 |
. . . . . 6
|
| 54 | cnfldbas 14116 |
. . . . . . . 8
| |
| 55 | 46, 54 | mgpbasg 13482 |
. . . . . . 7
|
| 56 | 43, 55 | mp1i 10 |
. . . . . 6
|
| 57 | 46 | mgpex 13481 |
. . . . . . 7
|
| 58 | 43, 57 | mp1i 10 |
. . . . . 6
|
| 59 | apsscn 8674 |
. . . . . . 7
| |
| 60 | 59 | a1i 9 |
. . . . . 6
|
| 61 | 53, 56, 58, 60 | ressbas2d 12746 |
. . . . 5
|
| 62 | 61 | mptru 1373 |
. . . 4
|
| 63 | zringplusg 14153 |
. . . 4
| |
| 64 | mpocnfldmul 14119 |
. . . . . . . 8
| |
| 65 | 46, 64 | mgpplusgg 13480 |
. . . . . . 7
|
| 66 | 43, 65 | mp1i 10 |
. . . . . 6
|
| 67 | cnex 8003 |
. . . . . . . 8
| |
| 68 | 67 | rabex 4177 |
. . . . . . 7
|
| 69 | 68 | a1i 9 |
. . . . . 6
|
| 70 | 53, 66, 69, 58 | ressplusgd 12806 |
. . . . 5
|
| 71 | 70 | mptru 1373 |
. . . 4
|
| 72 | 52, 62, 63, 71 | isghm 13373 |
. . 3
|
| 73 | 51, 72 | mpbiran 942 |
. 2
|
| 74 | 3, 41, 73 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-addf 8001 ax-mulf 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-tpos 6303 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-n0 9250 df-z 9327 df-dec 9458 df-uz 9602 df-rp 9729 df-fz 10084 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-abs 11164 df-struct 12680 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-mulr 12769 df-starv 12770 df-tset 12774 df-ple 12775 df-ds 12777 df-unif 12778 df-0g 12929 df-topgen 12931 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-ghm 13371 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-cring 13555 df-oppr 13624 df-dvdsr 13645 df-unit 13646 df-subrg 13775 df-bl 14102 df-mopn 14103 df-fg 14105 df-metu 14106 df-cnfld 14113 df-zring 14147 |
| This theorem is referenced by: lgseisenlem4 15314 |
| Copyright terms: Public domain | W3C validator |