ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmcl GIF version

Theorem rnglidlmcl 13979
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
Hypotheses
Ref Expression
rnglidlmcl.z 0 = (0g𝑅)
rnglidlmcl.b 𝐵 = (Base‘𝑅)
rnglidlmcl.t · = (.r𝑅)
rnglidlmcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
rnglidlmcl (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem rnglidlmcl
Dummy variables 𝑥 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlmcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
2 rnglidlmcl.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2193 . . . 4 (+g𝑅) = (+g𝑅)
4 rnglidlmcl.t . . . 4 · = (.r𝑅)
51, 2, 3, 4islidlm 13978 . . 3 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
6 oveq1 5926 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 · 𝑎) = (𝑋 · 𝑎))
76oveq1d 5934 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑎)(+g𝑅)𝑏))
87eleq1d 2262 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
98ralbidv 2494 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (∀𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
10 oveq2 5927 . . . . . . . . . . . . . . 15 (𝑎 = 𝑌 → (𝑋 · 𝑎) = (𝑋 · 𝑌))
1110oveq1d 5934 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → ((𝑋 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅)𝑏))
1211eleq1d 2262 . . . . . . . . . . . . 13 (𝑎 = 𝑌 → (((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1312ralbidv 2494 . . . . . . . . . . . 12 (𝑎 = 𝑌 → (∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
149, 13rspc2v 2878 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1514adantl 277 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
16 oveq2 5927 . . . . . . . . . . . . . . 15 (𝑏 = 0 → ((𝑋 · 𝑌)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅) 0 ))
1716eleq1d 2262 . . . . . . . . . . . . . 14 (𝑏 = 0 → (((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1817rspcv 2861 . . . . . . . . . . . . 13 ( 0𝐼 → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1918adantl 277 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
20 rnglidlmcl.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
21 rnggrp 13437 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
22213ad2ant1 1020 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → 𝑅 ∈ Grp)
2322ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Grp)
24 simpll1 1038 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Rng)
25 simprl 529 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑋𝐵)
26 simpll2 1039 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝐼𝐵)
27 simprr 531 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐼)
2826, 27sseldd 3181 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐵)
292, 4rngcl 13443 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3024, 25, 28, 29syl3anc 1249 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐵)
312, 3, 20, 23, 30grpridd 13109 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → ((𝑋 · 𝑌)(+g𝑅) 0 ) = (𝑋 · 𝑌))
3231eleq1d 2262 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 ↔ (𝑋 · 𝑌) ∈ 𝐼))
3332biimpd 144 . . . . . . . . . . . . 13 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3433ex 115 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3519, 34syl5d 68 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3635imp 124 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3715, 36syld 45 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3837ex 115 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3938com23 78 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)))
4039ex 115 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → ( 0𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
4140com23 78 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
42413exp 1204 . . . 4 (𝑅 ∈ Rng → (𝐼𝐵 → (∃𝑗 𝑗𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))))
43423impd 1223 . . 3 (𝑅 ∈ Rng → ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼) → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
445, 43biimtrid 152 . 2 (𝑅 ∈ Rng → (𝐼𝑈 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
45443imp1 1222 1 (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2164  wral 2472  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  0gc0g 12870  Grpcgrp 13075  Rngcrng 13431  LIdealclidl 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-abl 13360  df-mgp 13420  df-rng 13432  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968
This theorem is referenced by:  dflidl2rng  13980  rnglidlmmgm  13995  2idlcpblrng  14022
  Copyright terms: Public domain W3C validator