ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmcl GIF version

Theorem rnglidlmcl 14409
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
Hypotheses
Ref Expression
rnglidlmcl.z 0 = (0g𝑅)
rnglidlmcl.b 𝐵 = (Base‘𝑅)
rnglidlmcl.t · = (.r𝑅)
rnglidlmcl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
rnglidlmcl (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem rnglidlmcl
Dummy variables 𝑥 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlmcl.u . . . 4 𝑈 = (LIdeal‘𝑅)
2 rnglidlmcl.b . . . 4 𝐵 = (Base‘𝑅)
3 eqid 2209 . . . 4 (+g𝑅) = (+g𝑅)
4 rnglidlmcl.t . . . 4 · = (.r𝑅)
51, 2, 3, 4islidlm 14408 . . 3 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
6 oveq1 5981 . . . . . . . . . . . . . . 15 (𝑥 = 𝑋 → (𝑥 · 𝑎) = (𝑋 · 𝑎))
76oveq1d 5989 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → ((𝑥 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑎)(+g𝑅)𝑏))
87eleq1d 2278 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
98ralbidv 2510 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (∀𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼))
10 oveq2 5982 . . . . . . . . . . . . . . 15 (𝑎 = 𝑌 → (𝑋 · 𝑎) = (𝑋 · 𝑌))
1110oveq1d 5989 . . . . . . . . . . . . . 14 (𝑎 = 𝑌 → ((𝑋 · 𝑎)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅)𝑏))
1211eleq1d 2278 . . . . . . . . . . . . 13 (𝑎 = 𝑌 → (((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1312ralbidv 2510 . . . . . . . . . . . 12 (𝑎 = 𝑌 → (∀𝑏𝐼 ((𝑋 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 ↔ ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
149, 13rspc2v 2900 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
1514adantl 277 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼))
16 oveq2 5982 . . . . . . . . . . . . . . 15 (𝑏 = 0 → ((𝑋 · 𝑌)(+g𝑅)𝑏) = ((𝑋 · 𝑌)(+g𝑅) 0 ))
1716eleq1d 2278 . . . . . . . . . . . . . 14 (𝑏 = 0 → (((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 ↔ ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1817rspcv 2883 . . . . . . . . . . . . 13 ( 0𝐼 → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
1918adantl 277 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼))
20 rnglidlmcl.z . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
21 rnggrp 13867 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
22213ad2ant1 1023 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → 𝑅 ∈ Grp)
2322ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Grp)
24 simpll1 1041 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑅 ∈ Rng)
25 simprl 529 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑋𝐵)
26 simpll2 1042 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝐼𝐵)
27 simprr 531 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐼)
2826, 27sseldd 3205 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → 𝑌𝐵)
292, 4rngcl 13873 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
3024, 25, 28, 29syl3anc 1252 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐵)
312, 3, 20, 23, 30grpridd 13533 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → ((𝑋 · 𝑌)(+g𝑅) 0 ) = (𝑋 · 𝑌))
3231eleq1d 2278 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 ↔ (𝑋 · 𝑌) ∈ 𝐼))
3332biimpd 144 . . . . . . . . . . . . 13 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3433ex 115 . . . . . . . . . . . 12 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (((𝑋 · 𝑌)(+g𝑅) 0 ) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3519, 34syl5d 68 . . . . . . . . . . 11 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3635imp 124 . . . . . . . . . 10 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑏𝐼 ((𝑋 · 𝑌)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3715, 36syld 45 . . . . . . . . 9 ((((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼))
3837ex 115 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → ((𝑋𝐵𝑌𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → (𝑋 · 𝑌) ∈ 𝐼)))
3938com23 78 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) ∧ 0𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)))
4039ex 115 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → ( 0𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
4140com23 78 . . . . 5 ((𝑅 ∈ Rng ∧ 𝐼𝐵 ∧ ∃𝑗 𝑗𝐼) → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
42413exp 1207 . . . 4 (𝑅 ∈ Rng → (𝐼𝐵 → (∃𝑗 𝑗𝐼 → (∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))))
43423impd 1226 . . 3 (𝑅 ∈ Rng → ((𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑎𝐼𝑏𝐼 ((𝑥 · 𝑎)(+g𝑅)𝑏) ∈ 𝐼) → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
445, 43biimtrid 152 . 2 (𝑅 ∈ Rng → (𝐼𝑈 → ( 0𝐼 → ((𝑋𝐵𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼))))
45443imp1 1225 1 (((𝑅 ∈ Rng ∧ 𝐼𝑈0𝐼) ∧ (𝑋𝐵𝑌𝐼)) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wex 1518  wcel 2180  wral 2488  wss 3177  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  .rcmulr 13077  0gc0g 13255  Grpcgrp 13499  Rngcrng 13861  LIdealclidl 14396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-abl 13790  df-mgp 13850  df-rng 13862  df-lssm 14282  df-sra 14364  df-rgmod 14365  df-lidl 14398
This theorem is referenced by:  dflidl2rng  14410  rnglidlmmgm  14425  2idlcpblrng  14452
  Copyright terms: Public domain W3C validator