ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserle Unicode version

Theorem iserle 11848
Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
clim2iser.1  |-  Z  =  ( ZZ>= `  M )
iserle.2  |-  ( ph  ->  M  e.  ZZ )
iserle.4  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
iserle.5  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
iserle.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
iserle.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
iserle.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
Assertion
Ref Expression
iserle  |-  ( ph  ->  A  <_  B )
Distinct variable groups:    A, k    B, k    k, F    k, M    k, G    ph, k    k, Z

Proof of Theorem iserle
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 clim2iser.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 iserle.2 . 2  |-  ( ph  ->  M  e.  ZZ )
3 iserle.4 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
4 iserle.5 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
5 iserle.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
61, 2, 5serfre 10701 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
76ffvelcdmda 5769 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  e.  RR )
8 iserle.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
91, 2, 8serfre 10701 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
109ffvelcdmda 5769 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  G ) `  j
)  e.  RR )
11 simpr 110 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  Z )
1211, 1eleqtrdi 2322 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  M )
)
13 simpll 527 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ph )
141eleq2i 2296 . . . . . 6  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1514biimpri 133 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1615adantl 277 . . . 4  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  Z )
1713, 16, 5syl2anc 411 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
1813, 16, 8syl2anc 411 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
19 iserle.8 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
2013, 16, 19syl2anc 411 . . 3  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  <_  ( G `  k )
)
2112, 17, 18, 20ser3le 10754 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  (  seq M (  +  ,  F ) `  j
)  <_  (  seq M (  +  ,  G ) `  j
) )
221, 2, 3, 4, 7, 10, 21climle 11840 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317   RRcr 7994    + caddc 7998    <_ cle 8178   ZZcz 9442   ZZ>=cuz 9718    seqcseq 10664    ~~> cli 11784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785
This theorem is referenced by:  iserge0  11849  isumle  12001  ege2le3  12177
  Copyright terms: Public domain W3C validator