ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgcmpub Unicode version

Theorem cvgcmpub 11641
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1  |-  Z  =  ( ZZ>= `  M )
cvgcmp.2  |-  ( ph  ->  N  e.  Z )
cvgcmp.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
cvgcmp.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
cvgcmpub.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
cvgcmpub.6  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
cvgcmpub.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
Assertion
Ref Expression
cvgcmpub  |-  ( ph  ->  B  <_  A )
Distinct variable groups:    k, F    k, G    ph, k    k, M   
k, N    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem cvgcmpub
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 cvgcmp.2 . . . 4  |-  ( ph  ->  N  e.  Z )
32, 1eleqtrdi 2289 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzel2 9606 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . 2  |-  ( ph  ->  M  e.  ZZ )
6 cvgcmpub.6 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
7 cvgcmpub.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
8 cvgcmp.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
91, 5, 8serfre 10576 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
109ffvelcdmda 5697 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  e.  RR )
11 cvgcmp.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
121, 5, 11serfre 10576 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
1312ffvelcdmda 5697 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  RR )
14 simpr 110 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1514, 1eleqtrdi 2289 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
16 simpl 109 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ph )
171eleq2i 2263 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1817biimpri 133 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1916, 18, 8syl2an 289 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
2016, 18, 11syl2an 289 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
21 cvgcmpub.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
2216, 18, 21syl2an 289 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  <_  ( F `  k )
)
2315, 19, 20, 22ser3le 10629 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  <_  (  seq M (  +  ,  F ) `  n
) )
241, 5, 6, 7, 10, 13, 23climle 11499 1  |-  ( ph  ->  B  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258   RRcr 7878    + caddc 7882    <_ cle 8062   ZZcz 9326   ZZ>=cuz 9601    seqcseq 10539    ~~> cli 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator