ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgcmpub Unicode version

Theorem cvgcmpub 11483
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1  |-  Z  =  ( ZZ>= `  M )
cvgcmp.2  |-  ( ph  ->  N  e.  Z )
cvgcmp.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
cvgcmp.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
cvgcmpub.5  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
cvgcmpub.6  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
cvgcmpub.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
Assertion
Ref Expression
cvgcmpub  |-  ( ph  ->  B  <_  A )
Distinct variable groups:    k, F    k, G    ph, k    k, M   
k, N    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem cvgcmpub
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 cvgcmp.2 . . . 4  |-  ( ph  ->  N  e.  Z )
32, 1eleqtrdi 2270 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluzel2 9532 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
53, 4syl 14 . 2  |-  ( ph  ->  M  e.  ZZ )
6 cvgcmpub.6 . 2  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )
7 cvgcmpub.5 . 2  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )
8 cvgcmp.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
91, 5, 8serfre 10474 . . 3  |-  ( ph  ->  seq M (  +  ,  G ) : Z --> RR )
109ffvelcdmda 5651 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  e.  RR )
11 cvgcmp.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
121, 5, 11serfre 10474 . . 3  |-  ( ph  ->  seq M (  +  ,  F ) : Z --> RR )
1312ffvelcdmda 5651 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  F ) `  n
)  e.  RR )
14 simpr 110 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  Z )
1514, 1eleqtrdi 2270 . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  n  e.  ( ZZ>= `  M )
)
16 simpl 109 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ph )
171eleq2i 2244 . . . . 5  |-  ( k  e.  Z  <->  k  e.  ( ZZ>= `  M )
)
1817biimpri 133 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  Z )
1916, 18, 8syl2an 289 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
2016, 18, 11syl2an 289 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
21 cvgcmpub.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
2216, 18, 21syl2an 289 . . 3  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  <_  ( F `  k )
)
2315, 19, 20, 22ser3le 10517 . 2  |-  ( (
ph  /\  n  e.  Z )  ->  (  seq M (  +  ,  G ) `  n
)  <_  (  seq M (  +  ,  F ) `  n
) )
241, 5, 6, 7, 10, 13, 23climle 11341 1  |-  ( ph  ->  B  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4003   ` cfv 5216   RRcr 7809    + caddc 7813    <_ cle 7992   ZZcz 9252   ZZ>=cuz 9527    seqcseq 10444    ~~> cli 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-fz 10008  df-fzo 10142  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator