ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3le GIF version

Theorem ser3le 10704
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
ser3ge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
ser3ge0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
ser3le.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
serle.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
ser3le (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem ser3le
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 vex 2776 . . . . . 6 𝑘 ∈ V
3 ser3le.3 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4 ser3ge0.2 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
53, 4resubcld 8473 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ)
6 fveq2 5589 . . . . . . . 8 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
7 fveq2 5589 . . . . . . . 8 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
86, 7oveq12d 5975 . . . . . . 7 (𝑥 = 𝑘 → ((𝐺𝑥) − (𝐹𝑥)) = ((𝐺𝑘) − (𝐹𝑘)))
9 eqid 2206 . . . . . . 7 (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))) = (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))
108, 9fvmptg 5668 . . . . . 6 ((𝑘 ∈ V ∧ ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
112, 5, 10sylancr 414 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
1211, 5eqeltrd 2283 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) ∈ ℝ)
13 elfzuz 10163 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
14 serle.4 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))
1513, 14sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))
163, 4subge0d 8628 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1713, 16sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1815, 17mpbird 167 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺𝑘) − (𝐹𝑘)))
1913, 11sylan2 286 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
2018, 19breqtrrd 4079 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘))
211, 12, 20ser3ge0 10703 . . 3 (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁))
223recnd 8121 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
234recnd 8121 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
241, 22, 23, 11ser3sub 10690 . . 3 (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
2521, 24breqtrd 4077 . 2 (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
26 eqid 2206 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
27 eluzel2 9673 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
281, 27syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
2926, 28, 3serfre 10651 . . . 4 (𝜑 → seq𝑀( + , 𝐺):(ℤ𝑀)⟶ℝ)
3029, 1ffvelcdmd 5729 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ)
3126, 28, 4serfre 10651 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
3231, 1ffvelcdmd 5729 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
3330, 32subge0d 8628 . 2 (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)))
3425, 33mpbid 147 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773   class class class wbr 4051  cmpt 4113  cfv 5280  (class class class)co 5957  cr 7944  0cc0 7945   + caddc 7948  cle 8128  cmin 8263  cz 9392  cuz 9668  ...cfz 10150  seqcseq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615
This theorem is referenced by:  iserle  11728  cvgcmpub  11862
  Copyright terms: Public domain W3C validator