ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3le GIF version

Theorem ser3le 10515
Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.)
Hypotheses
Ref Expression
ser3ge0.1 (𝜑𝑁 ∈ (ℤ𝑀))
ser3ge0.2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
ser3le.3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
serle.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
ser3le (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem ser3le
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 vex 2740 . . . . . 6 𝑘 ∈ V
3 ser3le.3 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℝ)
4 ser3ge0.2 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
53, 4resubcld 8336 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ)
6 fveq2 5515 . . . . . . . 8 (𝑥 = 𝑘 → (𝐺𝑥) = (𝐺𝑘))
7 fveq2 5515 . . . . . . . 8 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
86, 7oveq12d 5892 . . . . . . 7 (𝑥 = 𝑘 → ((𝐺𝑥) − (𝐹𝑥)) = ((𝐺𝑘) − (𝐹𝑘)))
9 eqid 2177 . . . . . . 7 (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))) = (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))
108, 9fvmptg 5592 . . . . . 6 ((𝑘 ∈ V ∧ ((𝐺𝑘) − (𝐹𝑘)) ∈ ℝ) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
112, 5, 10sylancr 414 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
1211, 5eqeltrd 2254 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) ∈ ℝ)
13 elfzuz 10018 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
14 serle.4 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≤ (𝐺𝑘))
1513, 14sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ≤ (𝐺𝑘))
163, 4subge0d 8490 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1713, 16sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺𝑘) − (𝐹𝑘)) ↔ (𝐹𝑘) ≤ (𝐺𝑘)))
1815, 17mpbird 167 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺𝑘) − (𝐹𝑘)))
1913, 11sylan2 286 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘) = ((𝐺𝑘) − (𝐹𝑘)))
2018, 19breqtrrd 4031 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥)))‘𝑘))
211, 12, 20ser3ge0 10514 . . 3 (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁))
223recnd 7984 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ ℂ)
234recnd 7984 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
241, 22, 23, 11ser3sub 10503 . . 3 (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺𝑥) − (𝐹𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
2521, 24breqtrd 4029 . 2 (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)))
26 eqid 2177 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
27 eluzel2 9531 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
281, 27syl 14 . . . . 5 (𝜑𝑀 ∈ ℤ)
2926, 28, 3serfre 10472 . . . 4 (𝜑 → seq𝑀( + , 𝐺):(ℤ𝑀)⟶ℝ)
3029, 1ffvelcdmd 5652 . . 3 (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ)
3126, 28, 4serfre 10472 . . . 4 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℝ)
3231, 1ffvelcdmd 5652 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ)
3330, 32subge0d 8490 . 2 (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)))
3425, 33mpbid 147 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2737   class class class wbr 4003  cmpt 4064  cfv 5216  (class class class)co 5874  cr 7809  0cc0 7810   + caddc 7813  cle 7991  cmin 8126  cz 9251  cuz 9526  ...cfz 10006  seqcseq 10442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-inn 8918  df-n0 9175  df-z 9252  df-uz 9527  df-fz 10007  df-fzo 10140  df-seqfrec 10443
This theorem is referenced by:  iserle  11345  cvgcmpub  11479
  Copyright terms: Public domain W3C validator