| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ser3le | GIF version | ||
| Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005.) (Revised by Jim Kingdon, 23-Apr-2023.) |
| Ref | Expression |
|---|---|
| ser3ge0.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| ser3ge0.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) |
| ser3le.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℝ) |
| serle.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
| Ref | Expression |
|---|---|
| ser3le | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ser3ge0.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | vex 2774 | . . . . . 6 ⊢ 𝑘 ∈ V | |
| 3 | ser3le.3 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℝ) | |
| 4 | ser3ge0.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℝ) | |
| 5 | 3, 4 | resubcld 8435 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) |
| 6 | fveq2 5570 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐺‘𝑥) = (𝐺‘𝑘)) | |
| 7 | fveq2 5570 | . . . . . . . 8 ⊢ (𝑥 = 𝑘 → (𝐹‘𝑥) = (𝐹‘𝑘)) | |
| 8 | 6, 7 | oveq12d 5952 | . . . . . . 7 ⊢ (𝑥 = 𝑘 → ((𝐺‘𝑥) − (𝐹‘𝑥)) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 9 | eqid 2204 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) = (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))) | |
| 10 | 8, 9 | fvmptg 5649 | . . . . . 6 ⊢ ((𝑘 ∈ V ∧ ((𝐺‘𝑘) − (𝐹‘𝑘)) ∈ ℝ) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 11 | 2, 5, 10 | sylancr 414 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 12 | 11, 5 | eqeltrd 2281 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) ∈ ℝ) |
| 13 | elfzuz 10125 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 14 | serle.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) | |
| 15 | 13, 14 | sylan2 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) ≤ (𝐺‘𝑘)) |
| 16 | 3, 4 | subge0d 8590 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
| 17 | 13, 16 | sylan2 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘)) ↔ (𝐹‘𝑘) ≤ (𝐺‘𝑘))) |
| 18 | 15, 17 | mpbird 167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 19 | 13, 11 | sylan2 286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘) = ((𝐺‘𝑘) − (𝐹‘𝑘))) |
| 20 | 18, 19 | breqtrrd 4071 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 0 ≤ ((𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥)))‘𝑘)) |
| 21 | 1, 12, 20 | ser3ge0 10662 | . . 3 ⊢ (𝜑 → 0 ≤ (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁)) |
| 22 | 3 | recnd 8083 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
| 23 | 4 | recnd 8083 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 24 | 1, 22, 23, 11 | ser3sub 10649 | . . 3 ⊢ (𝜑 → (seq𝑀( + , (𝑥 ∈ V ↦ ((𝐺‘𝑥) − (𝐹‘𝑥))))‘𝑁) = ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) |
| 25 | 21, 24 | breqtrd 4069 | . 2 ⊢ (𝜑 → 0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁))) |
| 26 | eqid 2204 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 27 | eluzel2 9635 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 28 | 1, 27 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 29 | 26, 28, 3 | serfre 10610 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺):(ℤ≥‘𝑀)⟶ℝ) |
| 30 | 29, 1 | ffvelcdmd 5710 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐺)‘𝑁) ∈ ℝ) |
| 31 | 26, 28, 4 | serfre 10610 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶ℝ) |
| 32 | 31, 1 | ffvelcdmd 5710 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℝ) |
| 33 | 30, 32 | subge0d 8590 | . 2 ⊢ (𝜑 → (0 ≤ ((seq𝑀( + , 𝐺)‘𝑁) − (seq𝑀( + , 𝐹)‘𝑁)) ↔ (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁))) |
| 34 | 25, 33 | mpbid 147 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ (seq𝑀( + , 𝐺)‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 ↦ cmpt 4104 ‘cfv 5268 (class class class)co 5934 ℝcr 7906 0cc0 7907 + caddc 7910 ≤ cle 8090 − cmin 8225 ℤcz 9354 ℤ≥cuz 9630 ...cfz 10112 seqcseq 10573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-fz 10113 df-fzo 10247 df-seqfrec 10574 |
| This theorem is referenced by: iserle 11572 cvgcmpub 11706 |
| Copyright terms: Public domain | W3C validator |