Proof of Theorem subginv
| Step | Hyp | Ref
| Expression |
| 1 | | subg0.h |
. . . . 5
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| 2 | 1 | subggrp 13307 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 3 | 1 | subgbas 13308 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 4 | 3 | eleq2d 2266 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ (Base‘𝐻))) |
| 5 | 4 | biimpa 296 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
| 6 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 7 | | eqid 2196 |
. . . . 5
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 8 | | eqid 2196 |
. . . . 5
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 9 | | subginv.j |
. . . . 5
⊢ 𝐽 = (invg‘𝐻) |
| 10 | 6, 7, 8, 9 | grprinv 13183 |
. . . 4
⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
| 11 | 2, 5, 10 | syl2an2r 595 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
| 12 | 1 | a1i 9 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
| 13 | | eqidd 2197 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐺)) |
| 14 | | id 19 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 15 | | subgrcl 13309 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 16 | 12, 13, 14, 15 | ressplusgd 12806 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) |
| 17 | 16 | adantr 276 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
| 18 | 17 | oveqd 5939 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (𝑋(+g‘𝐻)(𝐽‘𝑋))) |
| 19 | | eqid 2196 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 20 | 1, 19 | subg0 13310 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
| 21 | 20 | adantr 276 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) = (0g‘𝐻)) |
| 22 | 11, 18, 21 | 3eqtr4d 2239 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺)) |
| 23 | 15 | adantr 276 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 24 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 25 | 24 | subgss 13304 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 26 | 25 | sselda 3183 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
| 27 | 6, 9 | grpinvcl 13180 |
. . . . . . . 8
⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽‘𝑋) ∈ (Base‘𝐻)) |
| 28 | 27 | ex 115 |
. . . . . . 7
⊢ (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
| 29 | 2, 28 | syl 14 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
| 30 | 3 | eleq2d 2266 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽‘𝑋) ∈ 𝑆 ↔ (𝐽‘𝑋) ∈ (Base‘𝐻))) |
| 31 | 29, 4, 30 | 3imtr4d 203 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 → (𝐽‘𝑋) ∈ 𝑆)) |
| 32 | 31 | imp 124 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ 𝑆) |
| 33 | 25 | sselda 3183 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽‘𝑋) ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
| 34 | 32, 33 | syldan 282 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
| 35 | | eqid 2196 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 36 | | subginv.i |
. . . 4
⊢ 𝐼 = (invg‘𝐺) |
| 37 | 24, 35, 19, 36 | grpinvid1 13184 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽‘𝑋) ∈ (Base‘𝐺)) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
| 38 | 23, 26, 34, 37 | syl3anc 1249 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
| 39 | 22, 38 | mpbird 167 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |