Step | Hyp | Ref
| Expression |
1 | | subg0.h |
. . . . 5
⊢ 𝐻 = (𝐺 ↾s 𝑆) |
2 | 1 | subggrp 13042 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
3 | 1 | subgbas 13043 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
4 | 3 | eleq2d 2247 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ (Base‘𝐻))) |
5 | 4 | biimpa 296 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
6 | | eqid 2177 |
. . . . 5
⊢
(Base‘𝐻) =
(Base‘𝐻) |
7 | | eqid 2177 |
. . . . 5
⊢
(+g‘𝐻) = (+g‘𝐻) |
8 | | eqid 2177 |
. . . . 5
⊢
(0g‘𝐻) = (0g‘𝐻) |
9 | | subginv.j |
. . . . 5
⊢ 𝐽 = (invg‘𝐻) |
10 | 6, 7, 8, 9 | grprinv 12928 |
. . . 4
⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
11 | 2, 5, 10 | syl2an2r 595 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
12 | 1 | a1i 9 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺 ↾s 𝑆)) |
13 | | eqidd 2178 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐺)) |
14 | | id 19 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) |
15 | | subgrcl 13044 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
16 | 12, 13, 14, 15 | ressplusgd 12589 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(+g‘𝐺) =
(+g‘𝐻)) |
17 | 16 | adantr 276 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
18 | 17 | oveqd 5894 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (𝑋(+g‘𝐻)(𝐽‘𝑋))) |
19 | | eqid 2177 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
20 | 1, 19 | subg0 13045 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) →
(0g‘𝐺) =
(0g‘𝐻)) |
21 | 20 | adantr 276 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) = (0g‘𝐻)) |
22 | 11, 18, 21 | 3eqtr4d 2220 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺)) |
23 | 15 | adantr 276 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ Grp) |
24 | | eqid 2177 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
25 | 24 | subgss 13039 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
26 | 25 | sselda 3157 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
27 | 6, 9 | grpinvcl 12926 |
. . . . . . . 8
⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽‘𝑋) ∈ (Base‘𝐻)) |
28 | 27 | ex 115 |
. . . . . . 7
⊢ (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
29 | 2, 28 | syl 14 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
30 | 3 | eleq2d 2247 |
. . . . . 6
⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽‘𝑋) ∈ 𝑆 ↔ (𝐽‘𝑋) ∈ (Base‘𝐻))) |
31 | 29, 4, 30 | 3imtr4d 203 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 → (𝐽‘𝑋) ∈ 𝑆)) |
32 | 31 | imp 124 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ 𝑆) |
33 | 25 | sselda 3157 |
. . . 4
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽‘𝑋) ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
34 | 32, 33 | syldan 282 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
35 | | eqid 2177 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
36 | | subginv.i |
. . . 4
⊢ 𝐼 = (invg‘𝐺) |
37 | 24, 35, 19, 36 | grpinvid1 12929 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽‘𝑋) ∈ (Base‘𝐺)) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
38 | 23, 26, 34, 37 | syl3anc 1238 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
39 | 22, 38 | mpbird 167 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |