ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subginv GIF version

Theorem subginv 13704
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subginv.i 𝐼 = (invg𝐺)
subginv.j 𝐽 = (invg𝐻)
Assertion
Ref Expression
subginv ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5 𝐻 = (𝐺s 𝑆)
21subggrp 13700 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
31subgbas 13701 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
43eleq2d 2299 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋𝑆𝑋 ∈ (Base‘𝐻)))
54biimpa 296 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
6 eqid 2229 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 eqid 2229 . . . . 5 (+g𝐻) = (+g𝐻)
8 eqid 2229 . . . . 5 (0g𝐻) = (0g𝐻)
9 subginv.j . . . . 5 𝐽 = (invg𝐻)
106, 7, 8, 9grprinv 13570 . . . 4 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g𝐻)(𝐽𝑋)) = (0g𝐻))
112, 5, 10syl2an2r 597 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐻)(𝐽𝑋)) = (0g𝐻))
121a1i 9 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑆))
13 eqidd 2230 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐺))
14 id 19 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
15 subgrcl 13702 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1612, 13, 14, 15ressplusgd 13148 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
1716adantr 276 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
1817oveqd 6011 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐺)(𝐽𝑋)) = (𝑋(+g𝐻)(𝐽𝑋)))
19 eqid 2229 . . . . 5 (0g𝐺) = (0g𝐺)
201, 19subg0 13703 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
2120adantr 276 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
2211, 18, 213eqtr4d 2272 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺))
2315adantr 276 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝐺 ∈ Grp)
24 eqid 2229 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2524subgss 13697 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2625sselda 3224 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
276, 9grpinvcl 13567 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽𝑋) ∈ (Base‘𝐻))
2827ex 115 . . . . . . 7 (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽𝑋) ∈ (Base‘𝐻)))
292, 28syl 14 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽𝑋) ∈ (Base‘𝐻)))
303eleq2d 2299 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽𝑋) ∈ 𝑆 ↔ (𝐽𝑋) ∈ (Base‘𝐻)))
3129, 4, 303imtr4d 203 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋𝑆 → (𝐽𝑋) ∈ 𝑆))
3231imp 124 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐽𝑋) ∈ 𝑆)
3325sselda 3224 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽𝑋) ∈ 𝑆) → (𝐽𝑋) ∈ (Base‘𝐺))
3432, 33syldan 282 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐽𝑋) ∈ (Base‘𝐺))
35 eqid 2229 . . . 4 (+g𝐺) = (+g𝐺)
36 subginv.i . . . 4 𝐼 = (invg𝐺)
3724, 35, 19, 36grpinvid1 13571 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽𝑋) ∈ (Base‘𝐺)) → ((𝐼𝑋) = (𝐽𝑋) ↔ (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺)))
3823, 26, 34, 37syl3anc 1271 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → ((𝐼𝑋) = (𝐽𝑋) ↔ (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺)))
3922, 38mpbird 167 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  Basecbs 13018  s cress 13019  +gcplusg 13096  0gc0g 13275  Grpcgrp 13519  invgcminusg 13520  SubGrpcsubg 13690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-subg 13693
This theorem is referenced by:  subginvcl  13706  subgsub  13709  subgmulg  13711  mplnegfi  14654
  Copyright terms: Public domain W3C validator