| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uchoice | Unicode version | ||
| Description: Principle of unique
choice. This is also called non-choice. The name
choice results in its similarity to something like acfun 7357 (with the key
difference being the change of |
| Ref | Expression |
|---|---|
| uchoice |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 |
. . . . . . . . 9
| |
| 2 | 1 | fnopabg 5423 |
. . . . . . . 8
|
| 3 | 2 | biimpi 120 |
. . . . . . 7
|
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | simpl 109 |
. . . . . 6
| |
| 6 | fnex 5834 |
. . . . . 6
| |
| 7 | 4, 5, 6 | syl2anc 411 |
. . . . 5
|
| 8 | fnopfvb 5647 |
. . . . . . . . . 10
| |
| 9 | nfv 1554 |
. . . . . . . . . . . 12
| |
| 10 | nfsbc1v 3027 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | nfan 1591 |
. . . . . . . . . . 11
|
| 12 | nfv 1554 |
. . . . . . . . . . . 12
| |
| 13 | nfsbc1v 3027 |
. . . . . . . . . . . 12
| |
| 14 | 12, 13 | nfan 1591 |
. . . . . . . . . . 11
|
| 15 | vex 2782 |
. . . . . . . . . . 11
| |
| 16 | vex 2782 |
. . . . . . . . . . 11
| |
| 17 | eleq1w 2270 |
. . . . . . . . . . . 12
| |
| 18 | sbceq1a 3018 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | anbi12d 473 |
. . . . . . . . . . 11
|
| 20 | sbceq1a 3018 |
. . . . . . . . . . . 12
| |
| 21 | 20 | anbi2d 464 |
. . . . . . . . . . 11
|
| 22 | 11, 14, 15, 16, 19, 21 | opelopabf 4342 |
. . . . . . . . . 10
|
| 23 | 8, 22 | bitrdi 196 |
. . . . . . . . 9
|
| 24 | 23 | ralrimiva 2583 |
. . . . . . . 8
|
| 25 | 24 | alrimiv 1900 |
. . . . . . 7
|
| 26 | 25 | ancli 323 |
. . . . . 6
|
| 27 | 4, 26 | syl 14 |
. . . . 5
|
| 28 | fneq1 5385 |
. . . . . 6
| |
| 29 | fveq1 5602 |
. . . . . . . . . 10
| |
| 30 | 29 | eqeq1d 2218 |
. . . . . . . . 9
|
| 31 | 30 | bibi1d 233 |
. . . . . . . 8
|
| 32 | 31 | ralbidv 2510 |
. . . . . . 7
|
| 33 | 32 | albidv 1850 |
. . . . . 6
|
| 34 | 28, 33 | anbi12d 473 |
. . . . 5
|
| 35 | 7, 27, 34 | elabd 2928 |
. . . 4
|
| 36 | ralcom4 2802 |
. . . . . 6
| |
| 37 | 36 | anbi2i 457 |
. . . . 5
|
| 38 | 37 | exbii 1631 |
. . . 4
|
| 39 | 35, 38 | sylibr 134 |
. . 3
|
| 40 | nfv 1554 |
. . . . . . . 8
| |
| 41 | nfcv 2352 |
. . . . . . . . . 10
| |
| 42 | 41, 10 | nfsbc 3029 |
. . . . . . . . 9
|
| 43 | 9, 42 | nfan 1591 |
. . . . . . . 8
|
| 44 | 40, 43 | nfbi 1615 |
. . . . . . 7
|
| 45 | 44 | nfal 1602 |
. . . . . 6
|
| 46 | nfv 1554 |
. . . . . 6
| |
| 47 | fveqeq2 5612 |
. . . . . . . 8
| |
| 48 | eleq1w 2270 |
. . . . . . . . 9
| |
| 49 | sbceq2a 3019 |
. . . . . . . . . 10
| |
| 50 | 49 | sbcbidv 3067 |
. . . . . . . . 9
|
| 51 | 48, 50 | anbi12d 473 |
. . . . . . . 8
|
| 52 | 47, 51 | bibi12d 235 |
. . . . . . 7
|
| 53 | 52 | albidv 1850 |
. . . . . 6
|
| 54 | 45, 46, 53 | cbvral 2741 |
. . . . 5
|
| 55 | 54 | anbi2i 457 |
. . . 4
|
| 56 | 55 | exbii 1631 |
. . 3
|
| 57 | 39, 56 | sylib 122 |
. 2
|
| 58 | eqidd 2210 |
. . . . . . 7
| |
| 59 | vex 2782 |
. . . . . . . . 9
| |
| 60 | vex 2782 |
. . . . . . . . 9
| |
| 61 | 59, 60 | fvex 5623 |
. . . . . . . 8
|
| 62 | eqeq2 2219 |
. . . . . . . . 9
| |
| 63 | dfsbcq 3010 |
. . . . . . . . . 10
| |
| 64 | 63 | anbi2d 464 |
. . . . . . . . 9
|
| 65 | 62, 64 | bibi12d 235 |
. . . . . . . 8
|
| 66 | 61, 65 | spcv 2877 |
. . . . . . 7
|
| 67 | 58, 66 | mpbid 147 |
. . . . . 6
|
| 68 | 67 | simprd 114 |
. . . . 5
|
| 69 | 68 | ralimi 2573 |
. . . 4
|
| 70 | 69 | anim2i 342 |
. . 3
|
| 71 | 70 | eximi 1626 |
. 2
|
| 72 | 57, 71 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |