ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uchoice Unicode version

Theorem uchoice 6204
Description: Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7290 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
Assertion
Ref Expression
uchoice  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
Distinct variable groups:    A, f, x, y    ph, f
Allowed substitution hints:    ph( x, y)    V( x, y, f)

Proof of Theorem uchoice
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
21fnopabg 5384 . . . . . . . 8  |-  ( A. x  e.  A  E! y ph  <->  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A )
32biimpi 120 . . . . . . 7  |-  ( A. x  e.  A  E! y ph  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
43adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
5 simpl 109 . . . . . 6  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  A  e.  V )
6 fnex 5787 . . . . . 6  |-  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A  e.  V )  ->  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  e.  _V )
74, 5, 6syl2anc 411 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V )
8 fnopfvb 5605 . . . . . . . . . 10  |-  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  u  e.  A )  ->  ( ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
)  =  v  <->  <. u ,  v >.  e.  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } ) )
9 nfv 1542 . . . . . . . . . . . 12  |-  F/ x  u  e.  A
10 nfsbc1v 3008 . . . . . . . . . . . 12  |-  F/ x [. u  /  x ]. ph
119, 10nfan 1579 . . . . . . . . . . 11  |-  F/ x
( u  e.  A  /\  [. u  /  x ]. ph )
12 nfv 1542 . . . . . . . . . . . 12  |-  F/ y  u  e.  A
13 nfsbc1v 3008 . . . . . . . . . . . 12  |-  F/ y
[. v  /  y ]. [. u  /  x ]. ph
1412, 13nfan 1579 . . . . . . . . . . 11  |-  F/ y ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
15 vex 2766 . . . . . . . . . . 11  |-  u  e. 
_V
16 vex 2766 . . . . . . . . . . 11  |-  v  e. 
_V
17 eleq1w 2257 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
18 sbceq1a 2999 . . . . . . . . . . . 12  |-  ( x  =  u  ->  ( ph 
<-> 
[. u  /  x ]. ph ) )
1917, 18anbi12d 473 . . . . . . . . . . 11  |-  ( x  =  u  ->  (
( x  e.  A  /\  ph )  <->  ( u  e.  A  /\  [. u  /  x ]. ph )
) )
20 sbceq1a 2999 . . . . . . . . . . . 12  |-  ( y  =  v  ->  ( [. u  /  x ]. ph  <->  [. v  /  y ]. [. u  /  x ]. ph ) )
2120anbi2d 464 . . . . . . . . . . 11  |-  ( y  =  v  ->  (
( u  e.  A  /\  [. u  /  x ]. ph )  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2211, 14, 15, 16, 19, 21opelopabf 4310 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )
238, 22bitrdi 196 . . . . . . . . 9  |-  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  u  e.  A )  ->  ( ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
)  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2423ralrimiva 2570 . . . . . . . 8  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  ->  A. u  e.  A  ( ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
)  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2524alrimiv 1888 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  ->  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2625ancli 323 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
274, 26syl 14 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
28 fneq1 5347 . . . . . 6  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
f  Fn  A  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
) )
29 fveq1 5560 . . . . . . . . . 10  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
f `  u )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
) )
3029eqeq1d 2205 . . . . . . . . 9  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
( f `  u
)  =  v  <->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v ) )
3130bibi1d 233 . . . . . . . 8  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )  <->  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
3231ralbidv 2497 . . . . . . 7  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  ( A. u  e.  A  ( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )  <->  A. u  e.  A  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
3332albidv 1838 . . . . . 6  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  ( A. v A. u  e.  A  ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. v A. u  e.  A  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
3428, 33anbi12d 473 . . . . 5  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
( f  Fn  A  /\  A. v A. u  e.  A  ( (
f `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )  <->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) ) )
357, 27, 34elabd 2909 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. v A. u  e.  A  ( (
f `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
36 ralcom4 2785 . . . . . 6  |-  ( A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. v A. u  e.  A  ( (
f `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
3736anbi2i 457 . . . . 5  |-  ( ( f  Fn  A  /\  A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )  <->  ( f  Fn  A  /\  A. v A. u  e.  A  ( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) ) )
3837exbii 1619 . . . 4  |-  ( E. f ( f  Fn  A  /\  A. u  e.  A  A. v
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) )  <->  E. f ( f  Fn  A  /\  A. v A. u  e.  A  ( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) ) )
3935, 38sylibr 134 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
40 nfv 1542 . . . . . . . 8  |-  F/ x
( f `  u
)  =  v
41 nfcv 2339 . . . . . . . . . 10  |-  F/_ x
v
4241, 10nfsbc 3010 . . . . . . . . 9  |-  F/ x [. v  /  y ]. [. u  /  x ]. ph
439, 42nfan 1579 . . . . . . . 8  |-  F/ x
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
4440, 43nfbi 1603 . . . . . . 7  |-  F/ x
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )
4544nfal 1590 . . . . . 6  |-  F/ x A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)
46 nfv 1542 . . . . . 6  |-  F/ u A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)
47 fveqeq2 5570 . . . . . . . 8  |-  ( u  =  x  ->  (
( f `  u
)  =  v  <->  ( f `  x )  =  v ) )
48 eleq1w 2257 . . . . . . . . 9  |-  ( u  =  x  ->  (
u  e.  A  <->  x  e.  A ) )
49 sbceq2a 3000 . . . . . . . . . 10  |-  ( u  =  x  ->  ( [. u  /  x ]. ph  <->  ph ) )
5049sbcbidv 3048 . . . . . . . . 9  |-  ( u  =  x  ->  ( [. v  /  y ]. [. u  /  x ]. ph  <->  [. v  /  y ]. ph ) )
5148, 50anbi12d 473 . . . . . . . 8  |-  ( u  =  x  ->  (
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) )
5247, 51bibi12d 235 . . . . . . 7  |-  ( u  =  x  ->  (
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )  <->  ( (
f `  x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) ) )
5352albidv 1838 . . . . . 6  |-  ( u  =  x  ->  ( A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. v ( ( f `  x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) ) )
5445, 46, 53cbvral 2725 . . . . 5  |-  ( A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) )
5554anbi2i 457 . . . 4  |-  ( ( f  Fn  A  /\  A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )  <->  ( f  Fn  A  /\  A. x  e.  A  A. v
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) ) ) )
5655exbii 1619 . . 3  |-  ( E. f ( f  Fn  A  /\  A. u  e.  A  A. v
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) )  <->  E. f ( f  Fn  A  /\  A. x  e.  A  A. v
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) ) ) )
5739, 56sylib 122 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) ) )
58 eqidd 2197 . . . . . . 7  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  ( f `  x )  =  ( f `  x ) )
59 vex 2766 . . . . . . . . 9  |-  f  e. 
_V
60 vex 2766 . . . . . . . . 9  |-  x  e. 
_V
6159, 60fvex 5581 . . . . . . . 8  |-  ( f `
 x )  e. 
_V
62 eqeq2 2206 . . . . . . . . 9  |-  ( v  =  ( f `  x )  ->  (
( f `  x
)  =  v  <->  ( f `  x )  =  ( f `  x ) ) )
63 dfsbcq 2991 . . . . . . . . . 10  |-  ( v  =  ( f `  x )  ->  ( [. v  /  y ]. ph  <->  [. ( f `  x )  /  y ]. ph ) )
6463anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( f `  x )  ->  (
( x  e.  A  /\  [. v  /  y ]. ph )  <->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
) )
6562, 64bibi12d 235 . . . . . . . 8  |-  ( v  =  ( f `  x )  ->  (
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) )  <->  ( (
f `  x )  =  ( f `  x )  <->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
) ) )
6661, 65spcv 2858 . . . . . . 7  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  ( (
f `  x )  =  ( f `  x )  <->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
) )
6758, 66mpbid 147 . . . . . 6  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
)
6867simprd 114 . . . . 5  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  [. ( f `
 x )  / 
y ]. ph )
6968ralimi 2560 . . . 4  |-  ( A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
7069anim2i 342 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) )  ->  (
f  Fn  A  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
7170eximi 1614 . 2  |-  ( E. f ( f  Fn  A  /\  A. x  e.  A  A. v
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) ) )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
f `  x )  /  y ]. ph )
)
7257, 71syl 14 1  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   A.wral 2475   _Vcvv 2763   [.wsbc 2989   <.cop 3626   {copab 4094    Fn wfn 5254   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator