ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uchoice Unicode version

Theorem uchoice 6190
Description: Principle of unique choice. This is also called non-choice. The name choice results in its similarity to something like acfun 7267 (with the key difference being the change of  E. to  E!) but unique choice in fact follows from the axiom of collection and our other axioms. This is somewhat similar to Corollary 3.9.2 of [HoTT], p. (varies) but is better described by the paragraph at the end of Section 3.9 which starts "A similar issue arises in set-theoretic mathematics". (Contributed by Jim Kingdon, 13-Sep-2025.)
Assertion
Ref Expression
uchoice  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
Distinct variable groups:    A, f, x, y    ph, f
Allowed substitution hints:    ph( x, y)    V( x, y, f)

Proof of Theorem uchoice
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
21fnopabg 5377 . . . . . . . 8  |-  ( A. x  e.  A  E! y ph  <->  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A )
32biimpi 120 . . . . . . 7  |-  ( A. x  e.  A  E! y ph  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
43adantl 277 . . . . . 6  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
)
5 simpl 109 . . . . . 6  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  A  e.  V )
6 fnex 5780 . . . . . 6  |-  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A  e.  V )  ->  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  e.  _V )
74, 5, 6syl2anc 411 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  e.  _V )
8 fnopfvb 5598 . . . . . . . . . 10  |-  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  u  e.  A )  ->  ( ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
)  =  v  <->  <. u ,  v >.  e.  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } ) )
9 nfv 1539 . . . . . . . . . . . 12  |-  F/ x  u  e.  A
10 nfsbc1v 3004 . . . . . . . . . . . 12  |-  F/ x [. u  /  x ]. ph
119, 10nfan 1576 . . . . . . . . . . 11  |-  F/ x
( u  e.  A  /\  [. u  /  x ]. ph )
12 nfv 1539 . . . . . . . . . . . 12  |-  F/ y  u  e.  A
13 nfsbc1v 3004 . . . . . . . . . . . 12  |-  F/ y
[. v  /  y ]. [. u  /  x ]. ph
1412, 13nfan 1576 . . . . . . . . . . 11  |-  F/ y ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
15 vex 2763 . . . . . . . . . . 11  |-  u  e. 
_V
16 vex 2763 . . . . . . . . . . 11  |-  v  e. 
_V
17 eleq1w 2254 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
x  e.  A  <->  u  e.  A ) )
18 sbceq1a 2995 . . . . . . . . . . . 12  |-  ( x  =  u  ->  ( ph 
<-> 
[. u  /  x ]. ph ) )
1917, 18anbi12d 473 . . . . . . . . . . 11  |-  ( x  =  u  ->  (
( x  e.  A  /\  ph )  <->  ( u  e.  A  /\  [. u  /  x ]. ph )
) )
20 sbceq1a 2995 . . . . . . . . . . . 12  |-  ( y  =  v  ->  ( [. u  /  x ]. ph  <->  [. v  /  y ]. [. u  /  x ]. ph ) )
2120anbi2d 464 . . . . . . . . . . 11  |-  ( y  =  v  ->  (
( u  e.  A  /\  [. u  /  x ]. ph )  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2211, 14, 15, 16, 19, 21opelopabf 4305 . . . . . . . . . 10  |-  ( <.
u ,  v >.  e.  { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )
238, 22bitrdi 196 . . . . . . . . 9  |-  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  u  e.  A )  ->  ( ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
)  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2423ralrimiva 2567 . . . . . . . 8  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  ->  A. u  e.  A  ( ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
)  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2524alrimiv 1885 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  ->  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
2625ancli 323 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
274, 26syl 14 . . . . 5  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
28 fneq1 5342 . . . . . 6  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
f  Fn  A  <->  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A
) )
29 fveq1 5553 . . . . . . . . . 10  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
f `  u )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u
) )
3029eqeq1d 2202 . . . . . . . . 9  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
( f `  u
)  =  v  <->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v ) )
3130bibi1d 233 . . . . . . . 8  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )  <->  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
3231ralbidv 2494 . . . . . . 7  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  ( A. u  e.  A  ( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )  <->  A. u  e.  A  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
3332albidv 1835 . . . . . 6  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  ( A. v A. u  e.  A  ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. v A. u  e.  A  ( ( { <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
3428, 33anbi12d 473 . . . . 5  |-  ( f  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  ->  (
( f  Fn  A  /\  A. v A. u  e.  A  ( (
f `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )  <->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  Fn  A  /\  A. v A. u  e.  A  ( ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) ) )
357, 27, 34elabd 2905 . . . 4  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. v A. u  e.  A  ( (
f `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
36 ralcom4 2782 . . . . . 6  |-  ( A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. v A. u  e.  A  ( (
f `  u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )
3736anbi2i 457 . . . . 5  |-  ( ( f  Fn  A  /\  A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )  <->  ( f  Fn  A  /\  A. v A. u  e.  A  ( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) ) )
3837exbii 1616 . . . 4  |-  ( E. f ( f  Fn  A  /\  A. u  e.  A  A. v
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) )  <->  E. f ( f  Fn  A  /\  A. v A. u  e.  A  ( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) ) )
3935, 38sylibr 134 . . 3  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) ) )
40 nfv 1539 . . . . . . . 8  |-  F/ x
( f `  u
)  =  v
41 nfcv 2336 . . . . . . . . . 10  |-  F/_ x
v
4241, 10nfsbc 3006 . . . . . . . . 9  |-  F/ x [. v  /  y ]. [. u  /  x ]. ph
439, 42nfan 1576 . . . . . . . 8  |-  F/ x
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
4440, 43nfbi 1600 . . . . . . 7  |-  F/ x
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )
4544nfal 1587 . . . . . 6  |-  F/ x A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)
46 nfv 1539 . . . . . 6  |-  F/ u A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)
47 fveqeq2 5563 . . . . . . . 8  |-  ( u  =  x  ->  (
( f `  u
)  =  v  <->  ( f `  x )  =  v ) )
48 eleq1w 2254 . . . . . . . . 9  |-  ( u  =  x  ->  (
u  e.  A  <->  x  e.  A ) )
49 sbceq2a 2996 . . . . . . . . . 10  |-  ( u  =  x  ->  ( [. u  /  x ]. ph  <->  ph ) )
5049sbcbidv 3044 . . . . . . . . 9  |-  ( u  =  x  ->  ( [. v  /  y ]. [. u  /  x ]. ph  <->  [. v  /  y ]. ph ) )
5148, 50anbi12d 473 . . . . . . . 8  |-  ( u  =  x  ->  (
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) )
5247, 51bibi12d 235 . . . . . . 7  |-  ( u  =  x  ->  (
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) )  <->  ( (
f `  x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) ) )
5352albidv 1835 . . . . . 6  |-  ( u  =  x  ->  ( A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. v ( ( f `  x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) ) )
5445, 46, 53cbvral 2722 . . . . 5  |-  ( A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
)  <->  A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) )
5554anbi2i 457 . . . 4  |-  ( ( f  Fn  A  /\  A. u  e.  A  A. v ( ( f `
 u )  =  v  <->  ( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph )
) )  <->  ( f  Fn  A  /\  A. x  e.  A  A. v
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) ) ) )
5655exbii 1616 . . 3  |-  ( E. f ( f  Fn  A  /\  A. u  e.  A  A. v
( ( f `  u )  =  v  <-> 
( u  e.  A  /\  [. v  /  y ]. [. u  /  x ]. ph ) ) )  <->  E. f ( f  Fn  A  /\  A. x  e.  A  A. v
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) ) ) )
5739, 56sylib 122 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) ) )
58 eqidd 2194 . . . . . . 7  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  ( f `  x )  =  ( f `  x ) )
59 vex 2763 . . . . . . . . 9  |-  f  e. 
_V
60 vex 2763 . . . . . . . . 9  |-  x  e. 
_V
6159, 60fvex 5574 . . . . . . . 8  |-  ( f `
 x )  e. 
_V
62 eqeq2 2203 . . . . . . . . 9  |-  ( v  =  ( f `  x )  ->  (
( f `  x
)  =  v  <->  ( f `  x )  =  ( f `  x ) ) )
63 dfsbcq 2987 . . . . . . . . . 10  |-  ( v  =  ( f `  x )  ->  ( [. v  /  y ]. ph  <->  [. ( f `  x )  /  y ]. ph ) )
6463anbi2d 464 . . . . . . . . 9  |-  ( v  =  ( f `  x )  ->  (
( x  e.  A  /\  [. v  /  y ]. ph )  <->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
) )
6562, 64bibi12d 235 . . . . . . . 8  |-  ( v  =  ( f `  x )  ->  (
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) )  <->  ( (
f `  x )  =  ( f `  x )  <->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
) ) )
6661, 65spcv 2854 . . . . . . 7  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  ( (
f `  x )  =  ( f `  x )  <->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
) )
6758, 66mpbid 147 . . . . . 6  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  ( x  e.  A  /\  [. (
f `  x )  /  y ]. ph )
)
6867simprd 114 . . . . 5  |-  ( A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  [. ( f `
 x )  / 
y ]. ph )
6968ralimi 2557 . . . 4  |-  ( A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
)  ->  A. x  e.  A  [. ( f `
 x )  / 
y ]. ph )
7069anim2i 342 . . 3  |-  ( ( f  Fn  A  /\  A. x  e.  A  A. v ( ( f `
 x )  =  v  <->  ( x  e.  A  /\  [. v  /  y ]. ph )
) )  ->  (
f  Fn  A  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
7170eximi 1611 . 2  |-  ( E. f ( f  Fn  A  /\  A. x  e.  A  A. v
( ( f `  x )  =  v  <-> 
( x  e.  A  /\  [. v  /  y ]. ph ) ) )  ->  E. f ( f  Fn  A  /\  A. x  e.  A  [. (
f `  x )  /  y ]. ph )
)
7257, 71syl 14 1  |-  ( ( A  e.  V  /\  A. x  e.  A  E! y ph )  ->  E. f
( f  Fn  A  /\  A. x  e.  A  [. ( f `  x
)  /  y ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   A.wral 2472   _Vcvv 2760   [.wsbc 2985   <.cop 3621   {copab 4089    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator