![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oddp1even | GIF version |
Description: An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
oddp1even | ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddm1even 11883 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1))) | |
2 | 2z 9284 | . . 3 ⊢ 2 ∈ ℤ | |
3 | peano2zm 9294 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
4 | dvdsadd 11846 | . . 3 ⊢ ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ 2 ∥ (2 + (𝑁 − 1)))) | |
5 | 2, 3, 4 | sylancr 414 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ 2 ∥ (2 + (𝑁 − 1)))) |
6 | 2cnd 8995 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
7 | zcn 9261 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
8 | 1cnd 7976 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
9 | 6, 7, 8 | addsub12d 8294 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 + (𝑁 − 1)) = (𝑁 + (2 − 1))) |
10 | 2m1e1 9040 | . . . . 5 ⊢ (2 − 1) = 1 | |
11 | 10 | oveq2i 5889 | . . . 4 ⊢ (𝑁 + (2 − 1)) = (𝑁 + 1) |
12 | 9, 11 | eqtrdi 2226 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 + (𝑁 − 1)) = (𝑁 + 1)) |
13 | 12 | breq2d 4017 | . 2 ⊢ (𝑁 ∈ ℤ → (2 ∥ (2 + (𝑁 − 1)) ↔ 2 ∥ (𝑁 + 1))) |
14 | 1, 5, 13 | 3bitrd 214 | 1 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5878 1c1 7815 + caddc 7817 − cmin 8131 2c2 8973 ℤcz 9256 ∥ cdvds 11797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-xor 1376 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-n0 9180 df-z 9257 df-dvds 11798 |
This theorem is referenced by: zeo5 11896 oddp1d2 11898 n2dvdsm1 11921 2sqpwodd 12179 oddennn 12396 |
Copyright terms: Public domain | W3C validator |