![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > halfpos | GIF version |
Description: A positive number is greater than its half. (Contributed by NM, 28-Oct-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
halfpos | ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpos2 9179 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2))) | |
2 | rehalfcl 9176 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ) | |
3 | 2, 2 | ltaddposd 8516 | . 2 ⊢ (𝐴 ∈ ℝ → (0 < (𝐴 / 2) ↔ (𝐴 / 2) < ((𝐴 / 2) + (𝐴 / 2)))) |
4 | recn 7974 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
5 | 2halves 9178 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
7 | 6 | breq2d 4030 | . 2 ⊢ (𝐴 ∈ ℝ → ((𝐴 / 2) < ((𝐴 / 2) + (𝐴 / 2)) ↔ (𝐴 / 2) < 𝐴)) |
8 | 1, 3, 7 | 3bitrd 214 | 1 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5896 ℂcc 7839 ℝcr 7840 0cc0 7841 + caddc 7844 < clt 8022 / cdiv 8659 2c2 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-mulrcl 7940 ax-addcom 7941 ax-mulcom 7942 ax-addass 7943 ax-mulass 7944 ax-distr 7945 ax-i2m1 7946 ax-0lt1 7947 ax-1rid 7948 ax-0id 7949 ax-rnegex 7950 ax-precex 7951 ax-cnre 7952 ax-pre-ltirr 7953 ax-pre-ltwlin 7954 ax-pre-lttrn 7955 ax-pre-apti 7956 ax-pre-ltadd 7957 ax-pre-mulgt0 7958 ax-pre-mulext 7959 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-xr 8026 df-ltxr 8027 df-le 8028 df-sub 8160 df-neg 8161 df-reap 8562 df-ap 8569 df-div 8660 df-2 9008 |
This theorem is referenced by: nominpos 9186 rphalflt 9713 ssblex 14388 |
Copyright terms: Public domain | W3C validator |