![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > apdivmuld | GIF version |
Description: Relationship between division and multiplication. (Contributed by Jim Kingdon, 26-Dec-2022.) |
Ref | Expression |
---|---|
divcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
divmulapd.4 | ⊢ (𝜑 → 𝐵 # 0) |
Ref | Expression |
---|---|
apdivmuld | ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcld.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divmulapd.4 | . . . 4 ⊢ (𝜑 → 𝐵 # 0) | |
4 | 1, 2, 3 | divclapd 8811 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℂ) |
5 | divmuld.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | apmul1 8809 | . . 3 ⊢ (((𝐴 / 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 / 𝐵) # 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) # (𝐶 · 𝐵))) | |
7 | 4, 5, 2, 3, 6 | syl112anc 1253 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ ((𝐴 / 𝐵) · 𝐵) # (𝐶 · 𝐵))) |
8 | 1, 2, 3 | divcanap1d 8812 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
9 | 5, 2 | mulcomd 8043 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) = (𝐵 · 𝐶)) |
10 | 8, 9 | breq12d 4043 | . 2 ⊢ (𝜑 → (((𝐴 / 𝐵) · 𝐵) # (𝐶 · 𝐵) ↔ 𝐴 # (𝐵 · 𝐶))) |
11 | 2, 5 | mulcld 8042 | . . 3 ⊢ (𝜑 → (𝐵 · 𝐶) ∈ ℂ) |
12 | apsym 8627 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐴 # (𝐵 · 𝐶) ↔ (𝐵 · 𝐶) # 𝐴)) | |
13 | 1, 11, 12 | syl2anc 411 | . 2 ⊢ (𝜑 → (𝐴 # (𝐵 · 𝐶) ↔ (𝐵 · 𝐶) # 𝐴)) |
14 | 7, 10, 13 | 3bitrd 214 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) # 𝐶 ↔ (𝐵 · 𝐶) # 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 0cc0 7874 · cmul 7879 # cap 8602 / cdiv 8693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 |
This theorem is referenced by: irrmulap 9716 tanaddaplem 11884 |
Copyright terms: Public domain | W3C validator |