![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2lt4 | GIF version |
Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
2lt4 | ⊢ 2 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt3 9152 | . 2 ⊢ 2 < 3 | |
2 | 3lt4 9154 | . 2 ⊢ 3 < 4 | |
3 | 2re 9052 | . . 3 ⊢ 2 ∈ ℝ | |
4 | 3re 9056 | . . 3 ⊢ 3 ∈ ℝ | |
5 | 4re 9059 | . . 3 ⊢ 4 ∈ ℝ | |
6 | 3, 4, 5 | lttri 8124 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
7 | 1, 2, 6 | mp2an 426 | 1 ⊢ 2 < 4 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4029 < clt 8054 2c2 9033 3c3 9034 4c4 9035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-2 9041 df-3 9042 df-4 9043 |
This theorem is referenced by: 1lt4 9156 2lt5 9159 eluz4eluz2 9632 fz0to4untppr 10190 fzo0to42pr 10287 4bc2eq6 10845 resqrexlemga 11167 sqrt2gt1lt2 11193 cos01bnd 11901 4sqlem12 12540 starvndxnplusgndx 12760 coseq0negpitopi 14971 |
Copyright terms: Public domain | W3C validator |