Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2lt4 | GIF version |
Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
2lt4 | ⊢ 2 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt3 9023 | . 2 ⊢ 2 < 3 | |
2 | 3lt4 9025 | . 2 ⊢ 3 < 4 | |
3 | 2re 8923 | . . 3 ⊢ 2 ∈ ℝ | |
4 | 3re 8927 | . . 3 ⊢ 3 ∈ ℝ | |
5 | 4re 8930 | . . 3 ⊢ 4 ∈ ℝ | |
6 | 3, 4, 5 | lttri 7999 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
7 | 1, 2, 6 | mp2an 423 | 1 ⊢ 2 < 4 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3981 < clt 7929 2c2 8904 3c3 8905 4c4 8906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-ltxr 7934 df-2 8912 df-3 8913 df-4 8914 |
This theorem is referenced by: 1lt4 9027 2lt5 9030 eluz4eluz2 9501 fz0to4untppr 10055 fzo0to42pr 10151 4bc2eq6 10683 resqrexlemga 10961 sqrt2gt1lt2 10987 cos01bnd 11695 coseq0negpitopi 13357 |
Copyright terms: Public domain | W3C validator |