Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2lt4 | GIF version |
Description: 2 is less than 4. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
2lt4 | ⊢ 2 < 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lt3 9048 | . 2 ⊢ 2 < 3 | |
2 | 3lt4 9050 | . 2 ⊢ 3 < 4 | |
3 | 2re 8948 | . . 3 ⊢ 2 ∈ ℝ | |
4 | 3re 8952 | . . 3 ⊢ 3 ∈ ℝ | |
5 | 4re 8955 | . . 3 ⊢ 4 ∈ ℝ | |
6 | 3, 4, 5 | lttri 8024 | . 2 ⊢ ((2 < 3 ∧ 3 < 4) → 2 < 4) |
7 | 1, 2, 6 | mp2an 424 | 1 ⊢ 2 < 4 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3989 < clt 7954 2c2 8929 3c3 8930 4c4 8931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-ltxr 7959 df-2 8937 df-3 8938 df-4 8939 |
This theorem is referenced by: 1lt4 9052 2lt5 9055 eluz4eluz2 9526 fz0to4untppr 10080 fzo0to42pr 10176 4bc2eq6 10708 resqrexlemga 10987 sqrt2gt1lt2 11013 cos01bnd 11721 coseq0negpitopi 13551 |
Copyright terms: Public domain | W3C validator |