| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfmpt2fcntop | GIF version | ||
| Description: Composition of continuous functions. –cn→ analogue of cnmpt12f 14802. (Contributed by Mario Carneiro, 3-Sep-2014.) |
| Ref | Expression |
|---|---|
| cncfmpt2fcntop.1 | ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| cncfmpt2f.2 | ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| cncfmpt2f.3 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
| cncfmpt2f.4 | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
| Ref | Expression |
|---|---|
| cncfmpt2fcntop | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt2fcntop.1 | . . . . 5 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) | |
| 2 | 1 | cntoptopon 15048 | . . . 4 ⊢ 𝐽 ∈ (TopOn‘ℂ) |
| 3 | cncfmpt2f.3 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | |
| 4 | cncfrss 15091 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → 𝑋 ⊆ ℂ) | |
| 5 | 3, 4 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | resttopon 14687 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝑋 ⊆ ℂ) → (𝐽 ↾t 𝑋) ∈ (TopOn‘𝑋)) | |
| 7 | 2, 5, 6 | sylancr 414 | . . 3 ⊢ (𝜑 → (𝐽 ↾t 𝑋) ∈ (TopOn‘𝑋)) |
| 8 | ssid 3214 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 9 | eqid 2206 | . . . . . 6 ⊢ (𝐽 ↾t 𝑋) = (𝐽 ↾t 𝑋) | |
| 10 | 2 | toponrestid 14537 | . . . . . 6 ⊢ 𝐽 = (𝐽 ↾t ℂ) |
| 11 | 1, 9, 10 | cncfcncntop 15109 | . . . . 5 ⊢ ((𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑋–cn→ℂ) = ((𝐽 ↾t 𝑋) Cn 𝐽)) |
| 12 | 5, 8, 11 | sylancl 413 | . . . 4 ⊢ (𝜑 → (𝑋–cn→ℂ) = ((𝐽 ↾t 𝑋) Cn 𝐽)) |
| 13 | 3, 12 | eleqtrd 2285 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 ↾t 𝑋) Cn 𝐽)) |
| 14 | cncfmpt2f.4 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | |
| 15 | 14, 12 | eleqtrd 2285 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 ↾t 𝑋) Cn 𝐽)) |
| 16 | cncfmpt2f.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) | |
| 17 | 7, 13, 15, 16 | cnmpt12f 14802 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ ((𝐽 ↾t 𝑋) Cn 𝐽)) |
| 18 | 17, 12 | eleqtrrd 2286 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 ↦ cmpt 4109 ∘ ccom 4683 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 − cmin 8250 abscabs 11352 ↾t crest 13115 MetOpencmopn 14347 TopOnctopon 14526 Cn ccn 14701 ×t ctx 14768 –cn→ccncf 15086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-map 6744 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-xneg 9901 df-xadd 9902 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-rest 13117 df-topgen 13136 df-psmet 14349 df-xmet 14350 df-met 14351 df-bl 14352 df-mopn 14353 df-top 14514 df-topon 14527 df-bases 14559 df-cn 14704 df-cnp 14705 df-tx 14769 df-cncf 15087 |
| This theorem is referenced by: sub1cncf 15118 sub2cncf 15119 addcncf 15128 subcncf 15129 dvcnp2cntop 15215 sincn 15285 coscn 15286 |
| Copyright terms: Public domain | W3C validator |