![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ghmfghm | GIF version |
Description: The function fulfilling the conditions of ghmgrp 13188 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmabl.p | ⊢ + = (+g‘𝐺) |
ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
ghmfghm.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
ghmfghm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
2 | ghmabl.y | . 2 ⊢ 𝑌 = (Base‘𝐻) | |
3 | ghmabl.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | ghmabl.q | . 2 ⊢ ⨣ = (+g‘𝐻) | |
5 | ghmfghm.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
6 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
7 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
8 | 6, 1, 2, 3, 4, 7, 5 | ghmgrp 13188 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
9 | fof 5476 | . . 3 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
10 | 7, 9 | syl 14 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
11 | 6 | 3expb 1206 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
12 | 1, 2, 3, 4, 5, 8, 10, 11 | isghmd 13322 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⟶wf 5250 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Grpcgrp 13072 GrpHom cghm 13310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-ghm 13311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |