| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmfghm | GIF version | ||
| Description: The function fulfilling the conditions of ghmgrp 13621 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmabl.p | ⊢ + = (+g‘𝐺) |
| ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| ghmfghm.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| ghmfghm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | ghmabl.y | . 2 ⊢ 𝑌 = (Base‘𝐻) | |
| 3 | ghmabl.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | ghmabl.q | . 2 ⊢ ⨣ = (+g‘𝐻) | |
| 5 | ghmfghm.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 6 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 7 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 8 | 6, 1, 2, 3, 4, 7, 5 | ghmgrp 13621 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 9 | fof 5524 | . . 3 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 10 | 7, 9 | syl 14 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 11 | 6 | 3expb 1209 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 12 | 1, 2, 3, 4, 5, 8, 10, 11 | isghmd 13755 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ⟶wf 5290 –onto→wfo 5292 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 Grpcgrp 13499 GrpHom cghm 13743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 df-minusg 13503 df-ghm 13744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |