| Step | Hyp | Ref
| Expression |
| 1 | | conjsubg.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
| 2 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
| 3 | 2 | oveq1d 5937 |
. . . . . . 7
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
| 4 | | subgrcl 13309 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| 5 | 4 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 6 | | conjghm.x |
. . . . . . . . . 10
⊢ 𝑋 = (Base‘𝐺) |
| 7 | | eqid 2196 |
. . . . . . . . . 10
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 8 | | conjnmz.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} |
| 9 | 8 | ssrab3 3269 |
. . . . . . . . . . 11
⊢ 𝑁 ⊆ 𝑋 |
| 10 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
| 11 | 9, 10 | sselid 3181 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 12 | 6, 7, 5, 11 | grpinvcld 13181 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 13 | 6 | subgss 13304 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
| 14 | 13 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ 𝑋) |
| 15 | 14 | sselda 3183 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
| 16 | | conjghm.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝐺) |
| 17 | 6, 16 | grpass 13141 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
| 18 | 5, 12, 15, 11, 17 | syl13anc 1251 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
| 19 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 20 | 6, 16, 19, 7, 5, 11 | grprinvd 13188 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
((invg‘𝐺)‘𝐴)) = (0g‘𝐺)) |
| 21 | 20 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
| 22 | 6, 16 | grpass 13141 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
| 23 | 5, 11, 12, 15, 22 | syl13anc 1251 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
| 24 | 6, 16, 19, 5, 15 | grplidd 13165 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
| 25 | 21, 23, 24 | 3eqtr3d 2237 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) = 𝑤) |
| 26 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) |
| 27 | 25, 26 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆) |
| 28 | 6, 16, 5, 12, 15 | grpcld 13146 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) |
| 29 | 8 | nmzbi 13339 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
| 30 | 10, 28, 29 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
| 31 | 27, 30 | mpbid 147 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆) |
| 32 | 18, 31 | eqeltrrd 2274 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) |
| 33 | 6, 16, 5, 15, 11 | grpcld 13146 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝑤 + 𝐴) ∈ 𝑋) |
| 34 | 6, 16, 5, 12, 33 | grpcld 13146 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑋) |
| 35 | 6, 16, 5, 11, 34 | grpcld 13146 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ 𝑋) |
| 36 | | conjghm.m |
. . . . . . . . 9
⊢ − =
(-g‘𝐺) |
| 37 | 6, 36 | grpsubcl 13212 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ 𝑋) |
| 38 | 5, 35, 11, 37 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ 𝑋) |
| 39 | 1, 3, 32, 38 | fvmptd3 5655 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
| 40 | 20 | oveq1d 5937 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g‘𝐺) + (𝑤 + 𝐴))) |
| 41 | 6, 16 | grpass 13141 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑤 + 𝐴) ∈ 𝑋)) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
| 42 | 5, 11, 12, 33, 41 | syl13anc 1251 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
| 43 | 6, 16, 19, 5, 33 | grplidd 13165 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴)) |
| 44 | 40, 42, 43 | 3eqtr3d 2237 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴)) |
| 45 | 44 | oveq1d 5937 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) = ((𝑤 + 𝐴) − 𝐴)) |
| 46 | 6, 16, 36 | grppncan 13223 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
| 47 | 5, 15, 11, 46 | syl3anc 1249 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
| 48 | 39, 45, 47 | 3eqtrd 2233 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤) |
| 49 | 5 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 50 | 11 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 51 | 14 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
| 52 | 51 | sselda 3183 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
| 53 | 6, 16, 49, 50, 52 | grpcld 13146 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → (𝐴 + 𝑥) ∈ 𝑋) |
| 54 | 6, 36 | grpsubcl 13212 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
| 55 | 49, 53, 50, 54 | syl3anc 1249 |
. . . . . . . 8
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
| 56 | 55 | ralrimiva 2570 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
| 57 | 1 | fnmpt 5384 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋 → 𝐹 Fn 𝑆) |
| 58 | 56, 57 | syl 14 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐹 Fn 𝑆) |
| 59 | | fnfvelrn 5694 |
. . . . . 6
⊢ ((𝐹 Fn 𝑆 ∧ (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
| 60 | 58, 32, 59 | syl2anc 411 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
| 61 | 48, 60 | eqeltrrd 2274 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ ran 𝐹) |
| 62 | 61 | ex 115 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → (𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹)) |
| 63 | 62 | ssrdv 3189 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ ran 𝐹) |
| 64 | 4 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 65 | | simplr 528 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
| 66 | 9, 65 | sselid 3181 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
| 67 | 14 | sselda 3183 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
| 68 | 6, 16, 36 | grpaddsubass 13222 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
| 69 | 64, 66, 67, 66, 68 | syl13anc 1251 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
| 70 | 6, 16, 36 | grpnpcan 13224 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 71 | 64, 67, 66, 70 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
| 72 | | simpr 110 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 73 | 71, 72 | eqeltrd 2273 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆) |
| 74 | 6, 36 | grpsubcl 13212 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥 − 𝐴) ∈ 𝑋) |
| 75 | 64, 67, 66, 74 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝐴) ∈ 𝑋) |
| 76 | 8 | nmzbi 13339 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑁 ∧ (𝑥 − 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
| 77 | 65, 75, 76 | syl2anc 411 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
| 78 | 73, 77 | mpbird 167 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝐴 + (𝑥 − 𝐴)) ∈ 𝑆) |
| 79 | 69, 78 | eqeltrd 2273 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑆) |
| 80 | 79, 1 | fmptd 5716 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐹:𝑆⟶𝑆) |
| 81 | 80 | frnd 5417 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → ran 𝐹 ⊆ 𝑆) |
| 82 | 63, 81 | eqssd 3200 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |