ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmz GIF version

Theorem conjnmz 13215
Description: A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
conjnmz.1 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
Assertion
Ref Expression
conjnmz ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑧, + ,𝑦   𝑥,𝐴,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑁   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑥)   (𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem conjnmz
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 conjsubg.f . . . . . . 7 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
2 oveq2 5903 . . . . . . . 8 (𝑥 = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
32oveq1d 5910 . . . . . . 7 (𝑥 = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
4 subgrcl 13115 . . . . . . . . . 10 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
54ad2antrr 488 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐺 ∈ Grp)
6 conjghm.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
7 eqid 2189 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
8 conjnmz.1 . . . . . . . . . . . 12 𝑁 = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
98ssrab3 3256 . . . . . . . . . . 11 𝑁𝑋
10 simplr 528 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐴𝑁)
119, 10sselid 3168 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐴𝑋)
126, 7, 5, 11grpinvcld 12990 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((invg𝐺)‘𝐴) ∈ 𝑋)
136subgss 13110 . . . . . . . . . . 11 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
1413adantr 276 . . . . . . . . . 10 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆𝑋)
1514sselda 3170 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤𝑋)
16 conjghm.p . . . . . . . . . 10 + = (+g𝐺)
176, 16grpass 12951 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝑤𝑋𝐴𝑋)) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)))
185, 12, 15, 11, 17syl13anc 1251 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)))
19 eqid 2189 . . . . . . . . . . . . 13 (0g𝐺) = (0g𝐺)
206, 16, 19, 7, 5, 11grprinvd 12997 . . . . . . . . . . . 12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + ((invg𝐺)‘𝐴)) = (0g𝐺))
2120oveq1d 5910 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = ((0g𝐺) + 𝑤))
226, 16grpass 12951 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝐴𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝑤𝑋)) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)))
235, 11, 12, 15, 22syl13anc 1251 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + 𝑤) = (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)))
246, 16, 19, 5, 15grplidd 12974 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((0g𝐺) + 𝑤) = 𝑤)
2521, 23, 243eqtr3d 2230 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) = 𝑤)
26 simpr 110 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤𝑆)
2725, 26eqeltrd 2266 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆)
286, 16, 5, 12, 15grpcld 12956 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋)
298nmzbi 13145 . . . . . . . . . 10 ((𝐴𝑁 ∧ (((invg𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆))
3010, 28, 29syl2anc 411 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆))
3127, 30mpbid 147 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((((invg𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)
3218, 31eqeltrrd 2267 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆)
336, 16, 5, 15, 11grpcld 12956 . . . . . . . . . 10 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝑤 + 𝐴) ∈ 𝑋)
346, 16, 5, 12, 33grpcld 12956 . . . . . . . . 9 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑋)
356, 16, 5, 11, 34grpcld 12956 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ 𝑋)
36 conjghm.m . . . . . . . . 9 = (-g𝐺)
376, 36grpsubcl 13021 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ 𝑋𝐴𝑋) → ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) ∈ 𝑋)
385, 35, 11, 37syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) ∈ 𝑋)
391, 3, 32, 38fvmptd3 5629 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴))
4020oveq1d 5910 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g𝐺) + (𝑤 + 𝐴)))
416, 16grpass 12951 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝐴𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑤 + 𝐴) ∈ 𝑋)) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
425, 11, 12, 33, 41syl13anc 1251 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + ((invg𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))))
436, 16, 19, 5, 33grplidd 12974 . . . . . . . 8 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((0g𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴))
4440, 42, 433eqtr3d 2230 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴))
4544oveq1d 5910 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝐴 + (((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) 𝐴) = ((𝑤 + 𝐴) 𝐴))
466, 16, 36grppncan 13032 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑤𝑋𝐴𝑋) → ((𝑤 + 𝐴) 𝐴) = 𝑤)
475, 15, 11, 46syl3anc 1249 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ((𝑤 + 𝐴) 𝐴) = 𝑤)
4839, 45, 473eqtrd 2226 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤)
495adantr 276 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
5011adantr 276 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) ∧ 𝑥𝑆) → 𝐴𝑋)
5114adantr 276 . . . . . . . . . . 11 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑆𝑋)
5251sselda 3170 . . . . . . . . . 10 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) ∧ 𝑥𝑆) → 𝑥𝑋)
536, 16, 49, 50, 52grpcld 12956 . . . . . . . . 9 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) ∧ 𝑥𝑆) → (𝐴 + 𝑥) ∈ 𝑋)
546, 36grpsubcl 13021 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋𝐴𝑋) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
5549, 53, 50, 54syl3anc 1249 . . . . . . . 8 ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
5655ralrimiva 2563 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → ∀𝑥𝑆 ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
571fnmpt 5361 . . . . . . 7 (∀𝑥𝑆 ((𝐴 + 𝑥) 𝐴) ∈ 𝑋𝐹 Fn 𝑆)
5856, 57syl 14 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝐹 Fn 𝑆)
59 fnfvelrn 5668 . . . . . 6 ((𝐹 Fn 𝑆 ∧ (((invg𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹)
6058, 32, 59syl2anc 411 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → (𝐹‘(((invg𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹)
6148, 60eqeltrrd 2267 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑤𝑆) → 𝑤 ∈ ran 𝐹)
6261ex 115 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → (𝑤𝑆𝑤 ∈ ran 𝐹))
6362ssrdv 3176 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 ⊆ ran 𝐹)
644ad2antrr 488 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
65 simplr 528 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐴𝑁)
669, 65sselid 3168 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝐴𝑋)
6714sselda 3170 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝑥𝑋)
686, 16, 36grpaddsubass 13031 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑥𝑋𝐴𝑋)) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
6964, 66, 67, 66, 68syl13anc 1251 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) = (𝐴 + (𝑥 𝐴)))
706, 16, 36grpnpcan 13033 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((𝑥 𝐴) + 𝐴) = 𝑥)
7164, 67, 66, 70syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝑥 𝐴) + 𝐴) = 𝑥)
72 simpr 110 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → 𝑥𝑆)
7371, 72eqeltrd 2266 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝑥 𝐴) + 𝐴) ∈ 𝑆)
746, 36grpsubcl 13021 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥 𝐴) ∈ 𝑋)
7564, 67, 66, 74syl3anc 1249 . . . . . . 7 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → (𝑥 𝐴) ∈ 𝑋)
768nmzbi 13145 . . . . . . 7 ((𝐴𝑁 ∧ (𝑥 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 𝐴)) ∈ 𝑆 ↔ ((𝑥 𝐴) + 𝐴) ∈ 𝑆))
7765, 75, 76syl2anc 411 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + (𝑥 𝐴)) ∈ 𝑆 ↔ ((𝑥 𝐴) + 𝐴) ∈ 𝑆))
7873, 77mpbird 167 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → (𝐴 + (𝑥 𝐴)) ∈ 𝑆)
7969, 78eqeltrd 2266 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) ∧ 𝑥𝑆) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑆)
8079, 1fmptd 5690 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝐹:𝑆𝑆)
8180frnd 5394 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → ran 𝐹𝑆)
8263, 81eqssd 3187 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑁) → 𝑆 = ran 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  {crab 2472  wss 3144  cmpt 4079  ran crn 4645   Fn wfn 5230  cfv 5235  (class class class)co 5895  Basecbs 12511  +gcplusg 12586  0gc0g 12758  Grpcgrp 12942  invgcminusg 12943  -gcsg 12944  SubGrpcsubg 13103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1re 7934  ax-addrcl 7937
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-inn 8949  df-2 9007  df-ndx 12514  df-slot 12515  df-base 12517  df-plusg 12599  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-sbg 12947  df-subg 13106
This theorem is referenced by:  conjnmzb  13216  conjnsg  13217
  Copyright terms: Public domain W3C validator