Step | Hyp | Ref
| Expression |
1 | | conjsubg.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
2 | | oveq2 5903 |
. . . . . . . 8
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → (𝐴 + 𝑥) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
3 | 2 | oveq1d 5910 |
. . . . . . 7
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
4 | | subgrcl 13115 |
. . . . . . . . . 10
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
5 | 4 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐺 ∈ Grp) |
6 | | conjghm.x |
. . . . . . . . . 10
⊢ 𝑋 = (Base‘𝐺) |
7 | | eqid 2189 |
. . . . . . . . . 10
⊢
(invg‘𝐺) = (invg‘𝐺) |
8 | | conjnmz.1 |
. . . . . . . . . . . 12
⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} |
9 | 8 | ssrab3 3256 |
. . . . . . . . . . 11
⊢ 𝑁 ⊆ 𝑋 |
10 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
11 | 9, 10 | sselid 3168 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
12 | 6, 7, 5, 11 | grpinvcld 12990 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
13 | 6 | subgss 13110 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
14 | 13 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ 𝑋) |
15 | 14 | sselda 3170 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑋) |
16 | | conjghm.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝐺) |
17 | 6, 16 | grpass 12951 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
18 | 5, 12, 15, 11, 17 | syl13anc 1251 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) = (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) |
19 | | eqid 2189 |
. . . . . . . . . . . . 13
⊢
(0g‘𝐺) = (0g‘𝐺) |
20 | 6, 16, 19, 7, 5, 11 | grprinvd 12997 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
((invg‘𝐺)‘𝐴)) = (0g‘𝐺)) |
21 | 20 | oveq1d 5910 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = ((0g‘𝐺) + 𝑤)) |
22 | 6, 16 | grpass 12951 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
23 | 5, 11, 12, 15, 22 | syl13anc 1251 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + 𝑤) = (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤))) |
24 | 6, 16, 19, 5, 15 | grplidd 12974 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + 𝑤) = 𝑤) |
25 | 21, 23, 24 | 3eqtr3d 2230 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) = 𝑤) |
26 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ 𝑆) |
27 | 25, 26 | eqeltrd 2266 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆) |
28 | 6, 16, 5, 12, 15 | grpcld 12956 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) |
29 | 8 | nmzbi 13145 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑁 ∧ (((invg‘𝐺)‘𝐴) + 𝑤) ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
30 | 10, 28, 29 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + 𝑤)) ∈ 𝑆 ↔ ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆)) |
31 | 27, 30 | mpbid 147 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((((invg‘𝐺)‘𝐴) + 𝑤) + 𝐴) ∈ 𝑆) |
32 | 18, 31 | eqeltrrd 2267 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) |
33 | 6, 16, 5, 15, 11 | grpcld 12956 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝑤 + 𝐴) ∈ 𝑋) |
34 | 6, 16, 5, 12, 33 | grpcld 12956 |
. . . . . . . . 9
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑋) |
35 | 6, 16, 5, 11, 34 | grpcld 12956 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ 𝑋) |
36 | | conjghm.m |
. . . . . . . . 9
⊢ − =
(-g‘𝐺) |
37 | 6, 36 | grpsubcl 13021 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ 𝑋) |
38 | 5, 35, 11, 37 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) ∈ 𝑋) |
39 | 1, 3, 32, 38 | fvmptd3 5629 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴)) |
40 | 20 | oveq1d 5910 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = ((0g‘𝐺) + (𝑤 + 𝐴))) |
41 | 6, 16 | grpass 12951 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑤 + 𝐴) ∈ 𝑋)) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
42 | 5, 11, 12, 33, 41 | syl13anc 1251 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
((invg‘𝐺)‘𝐴)) + (𝑤 + 𝐴)) = (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)))) |
43 | 6, 16, 19, 5, 33 | grplidd 12974 |
. . . . . . . 8
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((0g‘𝐺) + (𝑤 + 𝐴)) = (𝑤 + 𝐴)) |
44 | 40, 42, 43 | 3eqtr3d 2230 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = (𝑤 + 𝐴)) |
45 | 44 | oveq1d 5910 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝐴 +
(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) − 𝐴) = ((𝑤 + 𝐴) − 𝐴)) |
46 | 6, 16, 36 | grppncan 13032 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
47 | 5, 15, 11, 46 | syl3anc 1249 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ((𝑤 + 𝐴) − 𝐴) = 𝑤) |
48 | 39, 45, 47 | 3eqtrd 2226 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) = 𝑤) |
49 | 5 | adantr 276 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
50 | 11 | adantr 276 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
51 | 14 | adantr 276 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑆 ⊆ 𝑋) |
52 | 51 | sselda 3170 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
53 | 6, 16, 49, 50, 52 | grpcld 12956 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → (𝐴 + 𝑥) ∈ 𝑋) |
54 | 6, 36 | grpsubcl 13021 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
55 | 49, 53, 50, 54 | syl3anc 1249 |
. . . . . . . 8
⊢ ((((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
56 | 55 | ralrimiva 2563 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → ∀𝑥 ∈ 𝑆 ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
57 | 1 | fnmpt 5361 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋 → 𝐹 Fn 𝑆) |
58 | 56, 57 | syl 14 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝐹 Fn 𝑆) |
59 | | fnfvelrn 5668 |
. . . . . 6
⊢ ((𝐹 Fn 𝑆 ∧ (((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴)) ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
60 | 58, 32, 59 | syl2anc 411 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → (𝐹‘(((invg‘𝐺)‘𝐴) + (𝑤 + 𝐴))) ∈ ran 𝐹) |
61 | 48, 60 | eqeltrrd 2267 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑤 ∈ 𝑆) → 𝑤 ∈ ran 𝐹) |
62 | 61 | ex 115 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → (𝑤 ∈ 𝑆 → 𝑤 ∈ ran 𝐹)) |
63 | 62 | ssrdv 3176 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 ⊆ ran 𝐹) |
64 | 4 | ad2antrr 488 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐺 ∈ Grp) |
65 | | simplr 528 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑁) |
66 | 9, 65 | sselid 3168 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑋) |
67 | 14 | sselda 3170 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑋) |
68 | 6, 16, 36 | grpaddsubass 13031 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
69 | 64, 66, 67, 66, 68 | syl13anc 1251 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) = (𝐴 + (𝑥 − 𝐴))) |
70 | 6, 16, 36 | grpnpcan 13033 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
71 | 64, 67, 66, 70 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) = 𝑥) |
72 | | simpr 110 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
73 | 71, 72 | eqeltrd 2266 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆) |
74 | 6, 36 | grpsubcl 13021 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑥 − 𝐴) ∈ 𝑋) |
75 | 64, 67, 66, 74 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝑥 − 𝐴) ∈ 𝑋) |
76 | 8 | nmzbi 13145 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑁 ∧ (𝑥 − 𝐴) ∈ 𝑋) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
77 | 65, 75, 76 | syl2anc 411 |
. . . . . 6
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + (𝑥 − 𝐴)) ∈ 𝑆 ↔ ((𝑥 − 𝐴) + 𝐴) ∈ 𝑆)) |
78 | 73, 77 | mpbird 167 |
. . . . 5
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → (𝐴 + (𝑥 − 𝐴)) ∈ 𝑆) |
79 | 69, 78 | eqeltrd 2266 |
. . . 4
⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) ∧ 𝑥 ∈ 𝑆) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑆) |
80 | 79, 1 | fmptd 5690 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝐹:𝑆⟶𝑆) |
81 | 80 | frnd 5394 |
. 2
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → ran 𝐹 ⊆ 𝑆) |
82 | 63, 81 | eqssd 3187 |
1
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |